
DATABASE PROGRAMMING

With Python

Database Programming Overview

 Problem:

 Write a program in a traditional programming language

(Java/Python/C++/…) that accesses data in a relational database

 Preference:

 Support multiple database back-ends with minimal effort

 Good news:

 Relational databases understand SQL

Database Programming Challenges

 SQL standard is implemented in incompatible ways by database

vendors

 Each database vendor uses proprietary network protocols and

interfaces

 Using SQL to communicate with the database means we have two

languages to deal with:

 Host application language (ex. Python)

 Database language (SQL)

Database Programming Approaches

 Database-specific vs. Database-independent

 Database API Approaches

 Embedded SQL

 Object-Relational Mapping

Python Database Technologies

Database Specific Database Independent

Embedded SQL Python Database API

Object-Relational Mapping SQLAlchemy

Python Database API

 PEP-249 defines standard API for accessing databases using

embedded SQL approach

 https://www.python.org/dev/peps/pep-0249

 Many aspects of the standard are database-specific

 Python standard library support SQLite only

 Third-party modules implement PEP-249 for other databases

https://www.python.org/dev/peps/pep-0249

MySQL Python Module

 Implements Python Database API

 Install using pip

 pip install mysql-connector-python

 Docs

 https://dev.mysql.com/doc/connector-python/en

 Class Examples

 examples/pythondb

Basic Initialization Steps

 Import library

 from mysql.connector import connect

 Connect to MySQL server

 con = connect(user='root', password='passw0rd', database='simpledb’)

 Obtain cursor object from connection object

 cursor = con.cursor()

 Turn on auto-commit

 con.autocommit = True

 Connection and cursor should be closed when finished

 See MySQL library doc for details on handling connection errors:

 https://dev.mysql.com/doc/connector-python/en/connector-python-example-
connecting.html

https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html
https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html

Interacting with Database

 Invoke methods on cursor object to execute SQL and obtain results

 Insert/update/delete statement example:

cursor.execute("""

update Product

set Quantity = Quantity + 1

where ProdName = 'Fifi'

""")

Example: python-mysql-demo.py

Retrieving Data

 Select statement example:

cursor.execute("""

select ProdId, ProdName

from product

""")

result = cursor.fetchall() # Retrieve list of rows from database

for row in result:

(prodId, prodName) = row # Extract prodId and prodName from row tuple

print(f"{prodId}: {prodName}")

[(1, 'Fifi’),

 (2, 'Onions’),

 (3, 'Potatoes’)]

result

Using Program Variables in SQL

 Technique #1: String concatenation, format(), or f-strings

qty = 5

desc = ‘Toothpaste’

cursor.execute(f"""

 update Product

 set Quantity = Quantity + {qty}

 where ProdName = '{desc}'

""")

 Must properly quote values using SQL quoting rules

 Unsafe: Possible SQL Injection Vulnerability

Using Program Variables in SQL

 Technique #2: Pass a tuple of variable values to cursor.execute()

qty = 5

desc = ‘Toothpaste’

cursor.execute("""

 update Product

 set Quantity = Quantity + %s

 where ProdName = %s

""", (qty, desc))

 Use %s markers in query to refer to values in program variables passed in
separate tuple

 Database substitutes variables in place of %s markers in query

 Do not use quotes around %s in the query

 Safer than Technique #1: SQL injection not possible

SQL Injection

 Scenario: Need to execute queries that search for data specified by

the user

 Problem: User should not be allowed to modify the query in

undesirable ways

 Demo: examples/pythondb/dbwebapp.py

SQL Injection Vulnerability

 SQL Injection occurs when a user's input is inserted into an SQL query

and modifies the behavior of the query in an undesirable way

 May cause a database error

 May return more results than desired

 May modify data or schema in ways the developer did not intend

Preventing SQL Injection

 Two approaches

 Option 1: Carefully validate the user's input. Reject any input that

would modify the SQL in an undesirable way.

 Option 2: Use the two-argument form of execute() that passes

variables as a separate tuple parameter.

 This makes it impossible for the user to modify the SQL.

Object-Relational Mapping

 "Object-Relational Impedance Mismatch"

 Refers to the difficulties programmers encounter when they attempt to store

data in program objects in a relational database

 Object-Relational Mapping Libraries address this problem:

 Programmer defines a class for each table in the database

 O-R API maps rows in tables to objects in program

 Example:

 SQLAlchemy library

 See webapp-sqlalchemy-demo.py

