
DATABASE PROGRAMMING

With Python

Database Programming Overview

 Problem:

 Write a program in a traditional programming language

(Java/Python/C++/…) that accesses data in a relational database

 Preference:

 Support multiple database back-ends with minimal effort

 Good news:

 Relational databases understand SQL

Database Programming Challenges

 SQL standard is implemented in incompatible ways by database

vendors

 Each database vendor uses proprietary network protocols and

interfaces

 Using SQL to communicate with the database means we have two

languages to deal with:

 Host application language (ex. Python)

 Database language (SQL)

Database Programming Approaches

 Database-specific vs. Database-independent

 Database API Approaches

 Embedded SQL

 Object-Relational Mapping

Python Database Technologies

Database Specific Database Independent

Embedded SQL Python Database API

Object-Relational Mapping SQLAlchemy

Python Database API

 PEP-249 defines standard API for accessing databases using

embedded SQL approach

 https://www.python.org/dev/peps/pep-0249

 Many aspects of the standard are database-specific

 Python standard library support SQLite only

 Third-party modules implement PEP-249 for other databases

https://www.python.org/dev/peps/pep-0249

MySQL Python Module

 Implements Python Database API

 Install using pip

 pip install mysql-connector-python

 Docs

 https://dev.mysql.com/doc/connector-python/en

 Class Examples

 examples/pythondb

Basic Initialization Steps

 Import library

 from mysql.connector import connect

 Connect to MySQL server

 con = connect(user='root', password='passw0rd', database='simpledb’)

 Obtain cursor object from connection object

 cursor = con.cursor()

 Turn on auto-commit

 con.autocommit = True

 Connection and cursor should be closed when finished

 See MySQL library doc for details on handling connection errors:

 https://dev.mysql.com/doc/connector-python/en/connector-python-example-
connecting.html

https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html
https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html

Interacting with Database

 Invoke methods on cursor object to execute SQL and obtain results

 Insert/update/delete statement example:

cursor.execute("""

update Product

set Quantity = Quantity + 1

where ProdName = 'Fifi'

""")

Example: python-mysql-demo.py

Retrieving Data

 Select statement example:

cursor.execute("""

select ProdId, ProdName

from product

""")

result = cursor.fetchall() # Retrieve list of rows from database

for row in result:

(prodId, prodName) = row # Extract prodId and prodName from row tuple

print(f"{prodId}: {prodName}")

[(1, 'Fifi’),

 (2, 'Onions’),

 (3, 'Potatoes’)]

result

Using Program Variables in SQL

 Technique #1: String concatenation, format(), or f-strings

qty = 5

desc = ‘Toothpaste’

cursor.execute(f"""

 update Product

 set Quantity = Quantity + {qty}

 where ProdName = '{desc}'

""")

 Must properly quote values using SQL quoting rules

 Unsafe: Possible SQL Injection Vulnerability

Using Program Variables in SQL

 Technique #2: Pass a tuple of variable values to cursor.execute()

qty = 5

desc = ‘Toothpaste’

cursor.execute("""

 update Product

 set Quantity = Quantity + %s

 where ProdName = %s

""", (qty, desc))

 Use %s markers in query to refer to values in program variables passed in
separate tuple

 Database substitutes variables in place of %s markers in query

 Do not use quotes around %s in the query

 Safer than Technique #1: SQL injection not possible

SQL Injection

 Scenario: Need to execute queries that search for data specified by

the user

 Problem: User should not be allowed to modify the query in

undesirable ways

 Demo: examples/pythondb/dbwebapp.py

SQL Injection Vulnerability

 SQL Injection occurs when a user's input is inserted into an SQL query

and modifies the behavior of the query in an undesirable way

 May cause a database error

 May return more results than desired

 May modify data or schema in ways the developer did not intend

Preventing SQL Injection

 Two approaches

 Option 1: Carefully validate the user's input. Reject any input that

would modify the SQL in an undesirable way.

 Option 2: Use the two-argument form of execute() that passes

variables as a separate tuple parameter.

 This makes it impossible for the user to modify the SQL.

Object-Relational Mapping

 "Object-Relational Impedance Mismatch"

 Refers to the difficulties programmers encounter when they attempt to store

data in program objects in a relational database

 Object-Relational Mapping Libraries address this problem:

 Programmer defines a class for each table in the database

 O-R API maps rows in tables to objects in program

 Example:

 SQLAlchemy library

 See webapp-sqlalchemy-demo.py

