
DATABASE DESIGN

Indexing

1

Indexing

 An index is a special lookup table that can improve query

performance on a target database table

 Index contains values from selected columns of target table

 Always includes the primary key of target table

 Index is sorted by the values in the selected columns

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

FirstName CustID

Amy 3

Fred 1

Greta 2

Customer Index on Customer.FirstName

2

Creating an Index

Specify:

 Unique or non-unique

 Table and Columns to index

 Index sort order

Example:

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName ASC)

3

Unique Index

 A unique index prevents duplicate values from occurring in the

column(s) specified for the index

 Example: A unique index on Employee(Emp_No) prevents employees from

being assigned duplicate Emp_No's

Emp_ID FirstName LastName Emp_No

1 Fred Jones 014523

2 Greta Anderson 521341

3 Amy Peters 132112

4 Fred Hayes 623132

Employee

4

Multi-Column Unique Index

 A multi-column unique index prevents duplicate values from occurring

in the combination of columns specified for the index

 Example: A unique index on Customer(FirstName, LastName) prevents two

customers with the same first and last name

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

4 Fred Hayes 23 Winding Way

Customer

5

Indexes and Query Processing6

How Queries Use Indexes

 Indexes can speed up queries containing

 Joins

 WHERE criteria

 ORDER BY sort specifications

7

Sample Table and Indexes

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

FirstName CustID

Amy 3

Fred 1

Greta 2

Customer Cust_FirstName_Inx

LastName CustID

Anderson 2

Jones 1

Peters 3

Cust_LastName_Inx

FirstName LastName CustID

Amy Peters 3

Fred Jones 1

Greta Anderson 2

Cust_FullName_Inx

8

Simple WHERE Criteria

SELECT * FROM Customer

WHERE LastName = 'Peters'

 Without index, a sequential scan of entire table is required

 Using Cust_LastName_Inx, query can quickly locate correct records

9

Simple WHERE Criteria

Indexes can help with:

 Value match

 LastName = 'Example'

 Value range

 LastName > value

 'B' <= LastName < 'C'

 LastName LIKE 'B%'

Indexes cannot help with:

 Match middle or end of field

 LastName LIKE '%s'

10

Compound WHERE Criteria

SELECT * FROM Customer

WHERE FirstName = 'Amy' AND LastName = 'Peters'

 Here, Cust_FullName_Inx would be used to improve performance

11

Covering the Query

SELECT CustID FROM Customer

WHERE FirstName = 'Amy' AND LastName = 'Peters'

 Cust_FullName_Inx can be used to satisfy the query

 When all columns referenced by a query occur in the index, we say

the index "covers" the query

12

Which Index Will Be Used?

SELECT CustID FROM Customer
WHERE LastName = 'Peters'

 Cust_FullName_Inx and Cust_LastName_Inx cover the query

 Cust_FullName_Inx is ordered by FirstName

 Can't use it to quickly locate records where LastName = 'Peters'

 Query processor will probably choose Cust_LastName_Inx

 Takeaway: Order of columns matters in an index
 When leading column of index is not referenced in WHERE clause, index is less

likely to be used

13

Sorting using Indexes

SELECT * FROM Customer

WHERE FirstName = 'Amy'

ORDER BY LastName

 Using Cust_FullName_Inx, index scan retrieves records in the desired

order

 Query processor doesn't have to perform separate sorting step

 ORDER BY is a NO-OP!

14

Index Sort Order

 Index values are sorted in ascending order by default

 You can set the sort order for each column in the index

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName DESC)

So, when would you want to use descending sort order?

15

Sorting using Indexes

SELECT * FROM Customer

WHERE FirstName = 'Amy'

ORDER BY LastName DESC

 With this index:

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName DESC)

 Query processor doesn't have to perform separate sorting step

16

Determining Index Usage

 Query processor generates a

query plan to execute a

given query

 Most databases provide a

query analyzer tool that

displays the query plan for a

given query

 Query plan shows which

indexes database will use

17

Table Statistics

 Query processor uses table statistics to determine query plan

 Common statistics:

 Number of rows in the table

 Size of row

 Number of distinct values in each column

18

Why Is My Index Not Used?

 Updating Table Statistics

 If table statistics are out of date, query processor will make poor choices

 DBMS may automatically update table statistics

 DBMS provides tools to force table statistics to be updated

 Query processor will use index only if it will improve query

performance

 Important to check query plan to see if an index will be used

 Note that the query plan may change for a given query over time, as table

statistics change

19

Indexing Adds Overhead

 Indexes speed queries but slow updates

 Each insert/delete/update to a table incurs cost of updating all of the

table's indexes

 Caution: Adding an index that is never used by the query processor

will not speed up any queries and will slow down overall database

performance

20

Indexing Best Practices

 Indexing small tables is pointless

 Databases cache small tables in memory during query processing

 Queries that return a large portion of a table are not likely to use an

index

 Unless the index covers the query

 When possible, add a column to an existing index rather than creating

a new index

 More indexes slow update performance

21

Non-Unique Indexes

 If a column contains duplicate values, an index on that column must be

defined as non-unique

 In general, indexes are more likely to be used by the query processor

when they contain a large percentage of distinct values

 Example: A status code column with a handful of distinct values would not be

a good candidate for an index

 Selectivity of a column = # distinct values / total # of values

 Best Practice: Avoid creating indexes on columns with low selectivity

22

Designing Indexes23

Designing Indexes

 Wrong Question

 "What indexes should be created for this schema?"

 Right Question

 "What indexes should be created for these queries?"

 Index design is driven by queries, not schemas

24

The Three-Star Index Rating System

Lahdenmaki and Leach:

 First Star

 Columns used in Where clause appear leftmost in index

 Second Star

 Index contains columns used in Order By clause

 These columns follow the First Star columns

 Third Star

 Index contains all columns referenced by query

 These columns are at the end of the index

25

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

One-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City)

26

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

Two-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance)

27

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

Three-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance, SalesRep)

28

Three Star System Comments

 Works best for queries on a single table that combine WHERE criteria

with AND (not OR)

29

Diagnosing Query Performance Problems

 Analyze query logs

 Database query log

 Application query log

 Need to know

 How long each query takes

 How frequently each query is executed

 Which indexes are being used

 Which indexes are never used

30

Resources

 Lahdenmaki and Leach. Relational Database Index Design and the

Optimizers. Wiley, 2005.

 https://youtu.be/ELR7-RdU9XU

How to Design Indexes, Really (Focus on MySQL)

 https://youtu.be/qd0RcBXpDI8

MySQL Indexing: Best Practices

 https://www.percona.com/blog/

Percona Database Performance Blog (Focus on MySQL)

31

