
DATABASE DESIGN

Indexing

1

Indexing

 An index is a special lookup table that can improve query

performance on a target database table

 Index contains values from selected columns of target table

 Always includes the primary key of target table

 Index is sorted by the values in the selected columns

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

FirstName CustID

Amy 3

Fred 1

Greta 2

Customer Index on Customer.FirstName

2

Creating an Index

Specify:

 Unique or non-unique

 Table and Columns to index

 Index sort order

Example:

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName ASC)

3

Unique Index

 A unique index prevents duplicate values from occurring in the

column(s) specified for the index

 Example: A unique index on Employee(Emp_No) prevents employees from

being assigned duplicate Emp_No's

Emp_ID FirstName LastName Emp_No

1 Fred Jones 014523

2 Greta Anderson 521341

3 Amy Peters 132112

4 Fred Hayes 623132

Employee

4

Multi-Column Unique Index

 A multi-column unique index prevents duplicate values from occurring

in the combination of columns specified for the index

 Example: A unique index on Customer(FirstName, LastName) prevents two

customers with the same first and last name

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

4 Fred Hayes 23 Winding Way

Customer

5

Indexes and Query Processing6

How Queries Use Indexes

 Indexes can speed up queries containing

 Joins

 WHERE criteria

 ORDER BY sort specifications

7

Sample Table and Indexes

CustID FirstName LastName Address

1 Fred Jones 104 Anyplace Ave

2 Greta Anderson 201 Rambling Rd

3 Amy Peters 33 Farming St

FirstName CustID

Amy 3

Fred 1

Greta 2

Customer Cust_FirstName_Inx

LastName CustID

Anderson 2

Jones 1

Peters 3

Cust_LastName_Inx

FirstName LastName CustID

Amy Peters 3

Fred Jones 1

Greta Anderson 2

Cust_FullName_Inx

8

Simple WHERE Criteria

SELECT * FROM Customer

WHERE LastName = 'Peters'

 Without index, a sequential scan of entire table is required

 Using Cust_LastName_Inx, query can quickly locate correct records

9

Simple WHERE Criteria

Indexes can help with:

 Value match

 LastName = 'Example'

 Value range

 LastName > value

 'B' <= LastName < 'C'

 LastName LIKE 'B%'

Indexes cannot help with:

 Match middle or end of field

 LastName LIKE '%s'

10

Compound WHERE Criteria

SELECT * FROM Customer

WHERE FirstName = 'Amy' AND LastName = 'Peters'

 Here, Cust_FullName_Inx would be used to improve performance

11

Covering the Query

SELECT CustID FROM Customer

WHERE FirstName = 'Amy' AND LastName = 'Peters'

 Cust_FullName_Inx can be used to satisfy the query

 When all columns referenced by a query occur in the index, we say

the index "covers" the query

12

Which Index Will Be Used?

SELECT CustID FROM Customer
WHERE LastName = 'Peters'

 Cust_FullName_Inx and Cust_LastName_Inx cover the query

 Cust_FullName_Inx is ordered by FirstName

 Can't use it to quickly locate records where LastName = 'Peters'

 Query processor will probably choose Cust_LastName_Inx

 Takeaway: Order of columns matters in an index
 When leading column of index is not referenced in WHERE clause, index is less

likely to be used

13

Sorting using Indexes

SELECT * FROM Customer

WHERE FirstName = 'Amy'

ORDER BY LastName

 Using Cust_FullName_Inx, index scan retrieves records in the desired

order

 Query processor doesn't have to perform separate sorting step

 ORDER BY is a NO-OP!

14

Index Sort Order

 Index values are sorted in ascending order by default

 You can set the sort order for each column in the index

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName DESC)

So, when would you want to use descending sort order?

15

Sorting using Indexes

SELECT * FROM Customer

WHERE FirstName = 'Amy'

ORDER BY LastName DESC

 With this index:

CREATE UNIQUE INDEX cust_name

ON Customer(FirstName ASC, LastName DESC)

 Query processor doesn't have to perform separate sorting step

16

Determining Index Usage

 Query processor generates a

query plan to execute a

given query

 Most databases provide a

query analyzer tool that

displays the query plan for a

given query

 Query plan shows which

indexes database will use

17

Table Statistics

 Query processor uses table statistics to determine query plan

 Common statistics:

 Number of rows in the table

 Size of row

 Number of distinct values in each column

18

Why Is My Index Not Used?

 Updating Table Statistics

 If table statistics are out of date, query processor will make poor choices

 DBMS may automatically update table statistics

 DBMS provides tools to force table statistics to be updated

 Query processor will use index only if it will improve query

performance

 Important to check query plan to see if an index will be used

 Note that the query plan may change for a given query over time, as table

statistics change

19

Indexing Adds Overhead

 Indexes speed queries but slow updates

 Each insert/delete/update to a table incurs cost of updating all of the

table's indexes

 Caution: Adding an index that is never used by the query processor

will not speed up any queries and will slow down overall database

performance

20

Indexing Best Practices

 Indexing small tables is pointless

 Databases cache small tables in memory during query processing

 Queries that return a large portion of a table are not likely to use an

index

 Unless the index covers the query

 When possible, add a column to an existing index rather than creating

a new index

 More indexes slow update performance

21

Non-Unique Indexes

 If a column contains duplicate values, an index on that column must be

defined as non-unique

 In general, indexes are more likely to be used by the query processor

when they contain a large percentage of distinct values

 Example: A status code column with a handful of distinct values would not be

a good candidate for an index

 Selectivity of a column = # distinct values / total # of values

 Best Practice: Avoid creating indexes on columns with low selectivity

22

Designing Indexes23

Designing Indexes

 Wrong Question

 "What indexes should be created for this schema?"

 Right Question

 "What indexes should be created for these queries?"

 Index design is driven by queries, not schemas

24

The Three-Star Index Rating System

Lahdenmaki and Leach:

 First Star

 Columns used in Where clause appear leftmost in index

 Second Star

 Index contains columns used in Order By clause

 These columns follow the First Star columns

 Third Star

 Index contains all columns referenced by query

 These columns are at the end of the index

25

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

One-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City)

26

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

Two-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance)

27

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = 'Washington'

ORDER BY CustBalance

Three-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance, SalesRep)

28

Three Star System Comments

 Works best for queries on a single table that combine WHERE criteria

with AND (not OR)

29

Diagnosing Query Performance Problems

 Analyze query logs

 Database query log

 Application query log

 Need to know

 How long each query takes

 How frequently each query is executed

 Which indexes are being used

 Which indexes are never used

30

Resources

 Lahdenmaki and Leach. Relational Database Index Design and the

Optimizers. Wiley, 2005.

 https://youtu.be/ELR7-RdU9XU

How to Design Indexes, Really (Focus on MySQL)

 https://youtu.be/qd0RcBXpDI8

MySQL Indexing: Best Practices

 https://www.percona.com/blog/

Percona Database Performance Blog (Focus on MySQL)

31

