DATABASE DESIGN

_ Indexing

Indexing

1 An index is a special lookup table that can improve query
performance on a target database table
0 Index contains values from selected columns of target table

O Always includes the primary key of target table

11 Index is sorted by the values in the selected columns

Customer Index on Customer.FirstName

o e e e Fisome | Costd
Amy 3

Fred Jones 104 Anyplace Ave
Greta Anderson 201 Rambling Rd Fred
Amy Peters 33 Farming St Greta

Creating an Index

Specify:
-1 Unique or non-unique
1 Table and Columns to index

1 Index sort order

Example:

CREATE UNIQUE INDEX cust _name
ON Customer(FirstName ASC, LastName ASC)

Unique Index

7 A unique index prevents duplicate values from occurring in the
column(s) specified for the index

O Example: A unique index on Employee(Emp_No) prevents employees from
being assigned duplicate Emp_No's

Employee
Fred Jones 014523
Greta Anderson 521341
Amy Peters 132112
Fred Hayes 623132

Multi-Column Unique Index

7 A multi-column unique index prevents duplicate values from occurring
in the combination of columns specified for the index

O Example: A unique index on Customer(FirstName, LastName) prevents two

customers with the same first and last name

Customer

oo ritone Liotone_Lasies

Fred Jones 104 Anyplace Ave
Greta Anderson 201 Rambling Rd
Amy Peters 33 Farming St
Fred Hayes 23 Winding Way

Indexes and Query Processing

How Queries Use Indexes

0 Indexes can speed up queries containing

O Joins

0 WHERE criteria
o0 ORDER BY sort specifications

Sample Table and Indexes

Customer
T T [P,
Fred Jones 104 Anyplace Ave

Greta Anderson 201 Rambling Rd
Amy Peters 33 Farming St

Cust_FullName _Inx

Peters
Fred Jones

Greta Anderson

Cust_FirstName_Inx
Am 3
Fred

Greta

Cust_LastName_Inx

Anderson 2

Jones 1

Peters 3

Simple WHERE Criteria

SELECT * FROM Customer
WHERE LastName = 'Peters'

1 Without index, a sequential scan of entire table is required

1 Using Cust_LastName_Inx, query can quickly locate correct records

Simple WHERE Criteria

Indexes can help with:

1 Value match

O LastName = 'Example’

-1 Value range
O LastName > value
0 'B' <= LastName < 'C'
O LastName LIKE 'B%'

Indexes cannot help with:

1 Match middle or end of field
O LastName LIKE '%s'

Compound WHERE Criteria

SELECT * FROM Customer
WHERE FirstName = 'Amy' AND LastName = 'Peters'

1 Here, Cust_FullName_Inx would be used to improve performance

Covering the Query

SELECT CustlID FROM Customer
WHERE FirstName = 'Amy' AND LastName = 'Peters'

1 Cust_FullName_Inx can be used to satisfy the query

1 When all columns referenced by a query occur in the index, we say
the index "covers" the query

Which Index Will Be Used?¢

SELECT CustID FROM Customer
WHERE LastName = 'Peters'

1 Cust_FullName_Inx and Cust_LastName_Inx cover the query
1 Cust_FullName_Inx is ordered by FirstName

O Can't use it to quickly locate records where LastName = 'Peters'
1 Query processor will probably choose Cust_LastName_Inx

0 Takeaway: Order of columns matters in an index

0 When leading column of index is not referenced in WHERE clause, index is less
likely to be used

Sorting using Indexes

SELECT * FROM Customer
WHERE FirstName = 'Amy’
ORDER BY LastName

11 Using Cust_FullName_Inx, index scan retrieves records in the desired
order

1 Query processor doesn't have to perform separate sorting step
O ORDER BY is a NO-OP!

Index Sort Order

7 Index values are sorted in ascending order by default

7 You can set the sort order for each column in the index

CREATE UNIQUE INDEX cust name
ON Customer(FirstName ASC, LastName DESC)

So, when would you want to use descending sort order?

Sorting using Indexes

SELECT * FROM Customer
WHERE FirstName = 'Amy’
ORDER BY LastName DESC

-1 With this index:

CREATE UNIQUE INDEX cust_name
ON Customer(FirstName ASC, LastName DESC)

1 Query processor doesn't have to perform separate sorting step

Determining Index Usage

1 Query processor generates a
query plan to execute o
given query

1 Most databases provide o
query analyzer tool that
displays the query plan for a
given query

7 Query plan shows which
indexes database will use

= Hesultsl 3 Messages 3" Bxscution plan

Query 1: Query cost (relative to the batch): 100%
SELECT c.CustomerID, CompanyName FROM Customers c JOIN COrders o ON c.CustomerID = o.CustomerID JOIN [Order Details

Mis=zing Index (Impact 15.1722):

INDEX [«Name of Missing

Index, sysname,>] ON [dbo].[Customers]

= fel

[—.————|
?'::' Nested Loops —
SELECT

Cached plan size 56 KB
Degree of Paralleli 1
Esti i Operator Cost 0 (0%)
Memory Grant 1224
Esti 1 Subtree Cost 4.65256
i Number of Rows 401.49

Esti

Statement

SELECT c.CustomerID, CompanyName
FROM Customers ¢

JOIN Orders o

ON c.CustomerID = o.CustomerID
JOIM[Order Details] od
ONo.OrderID = od.OrderID

JOIM Products p

ON od.ProductID = p.ProductID
'WHERE c.Region="Delaware’'

AND

od.unitprice < §6000

Nested Loops

e

(Irner Joim)
Cost: 0 %

&

Index Seek (HonClustered)
[Products] . [PE_Products] [p]
Cost: 3 &

23 (7

Hash Match Clustered Index Scan (Clustered)
(Inner Join) [Customers] . [PK Customers] [c]
Cost: 1€ % Cost: 15 %

520
Clustered Index Scan (Clustered)

[Orders] . [PE Orders] [o]
Cost: 48 %

539

Clustered Index Seek (Clustered)
[Order Details]. [PK Order_Details]..
Cost: 20 %

@ Query executed successfully.

Table Statistics

1 Query processor uses table statistics to determine query plan

1 Common statistics:
o Number of rows in the table
o Size of row

0 Number of distinct values in each column

Why Is My Index Not Used?

1 Updating Table Statistics
O If table statistics are out of date, query processor will make poor choices
o DBMS may automatically update table statistics
O DBMS provides tools to force table statistics to be updated

1 Query processor will use index only if it will improve query
performance
O Important to check query plan to see if an index will be used

O Note that the query plan may change for a given query over time, as table
statistics change

Indexing Adds Overhead

71 Indexes speed queries but slow updates
1 Each insert/delete /update to a table incurs cost of updating all of the
table's indexes

1 Caution: Adding an index that is never used by the query processor
will not speed up any queries and will slow down overall database

performance

Indexing Best Practices

11 Indexing small tables is pointless
O Databases cache small tables in memory during query processing

1 Queries that return a large portion of a table are not likely to use an
index
O Unless the index covers the query

1 When possible, add a column to an existing index rather than creating
a new index

O More indexes slow update performance

Non-Unique Indexes

0 If a column contains duplicate values, an index on that column must be
defined as non-unique

71 In general, indexes are more likely to be used by the query processor
when they contain a large percentage of distinct values

O Example: A status code column with a handful of distinct values would not be
a good candidate for an index

1 Selectivity of a column = # distinct values / total # of values

-1 Best Practice: Avoid creating indexes on columns with low selectivity

Designing Indexes

Designing Indexes

1 Wrong Question

0 "What indexes should be created for this schema?"

1 Right Question

0 "What indexes should be created for these queriese”

11 Index design is driven by queries, not schemas

The Three-Star Index Rating System

Lahdenmaki and Leach:

1 First Star
O Columns used in Where clause appear leftmost in index
1 Second Star

O Index contains columns used in Order By clause

o These columns follow the First Star columns

1 Third Star

O Index contains all columns referenced by query

O These columns are at the end of the index

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = "Washington'
ORDER BY CustBalance

One-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City)

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = "Washington'
ORDER BY CustBalance

Two-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance)

Using the Three-Star System to Design an Index

SELECT LastName, SalesRep

FROM Customer

WHERE LastName = 'Smith' AND City = "Washington'
ORDER BY CustBalance

Three-Star Index:

CREATE INDEX Cust_Info_Inx(LastName, City, CustBalance, SalesRep)

Three Star System Comments

1 Works best for queries on a single table that combine WHERE criteria
with AND (not OR)

Diagnosing Query Performance Problems

1 Analyze query logs
O Database query log
O Application query log
7 Need to know
O How long each query takes
O How frequently each query is executed
O Which indexes are being used

o Which indexes are never used

Resources

1 Lahdenmaki and Leach. Relational Database Index Design and the
Optimizers. Wiley, 2005.

1 https:/ /youtu.be /ELR7 -RdU9XU
How to Design Indexes, Really (Focus on MySQL)

1 https://youtu.be /qdORcBXpDI8
MySQL Indexing: Best Practices

1 https:/ /www.percona.com /blog/
Percona Database Performance Blog (Focus on MySQL)

