
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 15

Transaction Management



15-2

Outline 

▪ Transaction basics

▪ Concurrency control

▪ Transaction design issues

▪ Workflow management



15-3

Transaction Definition

▪ Collection of database operations 

processed as one logical unit of work

▪ Prevents lost data due to

▪ Interference among concurrent users

▪ Failures

▪ Supports daily operations of an 

organization



15-4

ATM Example 

(No Transaction)
CREATE PROCEDURE withdraw(IN id INT, IN amt NUMERIC(18,2)) 

BEGIN

DECLARE curamt numeric(18,2)

SELECT balance INTO curamt 

FROM account WHERE account_id = id;

IF NOT curamt IS NULL THEN

IF curamt - amt >= 0 THEN

UPDATE account SET balance = curamt - amt 

WHERE account_id = id;

END IF;

END IF; 

END;

What can go wrong if 

two people execute 

this procedure against 

the same account, 

simultaneously?

account_id balance

100 5000.00

101 3000.00

account



15-5

ATM Transaction Example

CREATE PROCEDURE withdraw(IN id INT, IN amt NUMERIC(18,2)) 

BEGIN

DECLARE curamt numeric(18,2)

START TRANSACTION;

SELECT balance INTO curamt 

FROM account WHERE account_id = id;

IF NOT curamt IS NULL THEN

IF curamt - amt >= 0 THEN

UPDATE account SET balance = curamt - amt 

WHERE account_id = id;

END IF;

END IF; 

COMMIT;

END;



15-6

Transaction Properties

▪ Atomic

▪ All updates in a given transaction either 

succeed or fail as a unit

▪ Consistent

▪ Because of the atomic and isolated 

properties, a properly designed transaction is 

guaranteed to take the database from one 

valid state to another



15-7

Transaction Properties

▪ Isolated

▪ When transactions run concurrently, one 

transaction cannot "see" updates made by 

another concurrent transaction

▪ Durable

▪ A transaction's updates persist upon 

completion, even if certain types of system 

failure occur



15-8

Concurrency Control

▪ Problem definition

▪ Concurrency control problems

▪ Concurrency control tools



15-9

Concurrency Control Problem

▪ Objective: 

▪ Maximize throughput: number of 

transactions processed per unit time

▪ Constraint: 

▪ No interference between transactions

▪ Effect should be the same as if transactions 

were executed sequentially



15-10

Lost Update Problem

Transaction A Time Transaction B 

Read SR (10) T1  

 T2 Read SR (10) 

   SR = SR -1  T3  

 T4    SR = SR -1  

Write SR (9) T5  

 T6 Write SR (9) 
 



15-11

Dirty Read Problem

Transaction A Time Transaction B 

Read SR (10) T1  

SR = SR - 1 T2  

Write SR  (9) T3  

 T4 Read SR (9) 

ROLLBACK T5  
 



15-12

Phantom Reads

▪ Interference causes inconsistency among 

multiple retrievals of a subset of data

▪ Examples:

▪ Incorrect summary 



15-13

Preventing Concurrency 

Problems
▪ Two approaches:

▪ Pessimistic (using locking)

▪ Optimistic (using versioning)



15-14

Locking Fundamentals

▪ Obtain lock before accessing an item

▪ Wait if a conflicting lock is held

▪ Shared lock: blocks exclusive locks

▪ Exclusive lock: blocks shared and exclusive 

locks



15-15

Two Phase Locking

Within a transaction:

▪ Database acquires 

▪ shared locks for SELECT statements

▪ exclusive locks for 

INSERT/UPDATE/DELETE statements

▪ Locks are held until COMMIT / 

ROLLBACK



15-16

Deadlock (Mutual Waiting)

Transaction A Time Transaction B 

XLock SR1 T1  

 T2 XLock SR2 

XLock SR2 (wait) T3  

 T4 XLock SR1 (wait) 

 



15-17

Isolation Levels

▪ Degree to which a transaction is separated 
from the actions of other transactions

▪ Balance concurrency control overhead 
with interference problems

▪ Some transactions can tolerate 
uncommitted dependency and inconsistent 
retrieval problems

▪ Use the SET TRANSACTION ISOLATION 
LEVEL statement



15-18

SQL Isolation Levels

Level XLocks SLocks Interference

Read 

uncommitted

Long None All

Read 

committed

Long Short All except dirty 

read

Repeatable 

read

Long Long Phantom reads

Serializable Long Long None



15-19

Improving Transaction 

Performance
▪ Adjust transaction boundaries

▪ Reorder transaction operations



15-20

Adjust Transaction Boundaries

▪ START TRANSACTION;

SELECT * FROM ...

... prompt user for info ...

UPDATE ...

COMMIT TRANSACTION

▪ Including user interaction in transaction 

boundaries is never a good idea



15-21

Adjust Transaction Boundaries

▪ Break original transaction into two:

START TRANSACTION;

SELECT * FROM ... ;

COMMIT;

... prompt user for info ...

START TRANSACTION;

SELECT * FROM ... ; -- still ok to proceed?

UPDATE ... ;

COMMIT TRANSACTION;



15-22

Reorder Transaction Operations

Attempt #1

START TRANSACTION;

SELECT balance 

FROM account 

WHERE id = ?;

IF balance – amt_withdraw < 0

ROLLBACK

ELSE

UPDATE account

SET balance = balance – amt_withdraw

WHERE id = ?;

COMMIT

END IF

Attempt #2
START TRANSACTION;

UPDATE account

SET balance = balance – amt_withdraw

WHERE id = ?;

SELECT balance 

FROM account 

WHERE id = ?;

IF balance < 0

ROLLBACK

ELSE

COMMIT

END IF



15-23

Reordering Operations

▪ What isolation levels are required for the 

transactions on the previous slide to work 

properly?



15-24

MySQL Demo Script
SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE;

START TRANSACTION;

SELECT * FROM account WHERE id = 101;

UPDATE account SET balance = balance - 100 WHERE id = 101;

COMMIT;



15-25

Optimistic Approaches

▪ Assumes conflicts are rare

▪ No locks

▪ Often uses row versioning

▪ Check for conflicts

▪ After each read and write, or

▪ At end of transaction

▪ Evaluation

▪ Less overhead, but more performance 
variation



15-26

MySQL Concurrency Control

▪ Hybrid Approach

▪ Writes place exclusive locks

▪ Reads use both versioning and shared 

locks

▪ Read Committed and Repeatable Read: 

Versioning

▪ Serializable: Shared locks



15-27

MySQL Multi-Row Versioning

▪ MySQL takes a "snapshot" of rows to provide 
a consistent read for transactions running in 
Read Committed and Repeatable Read

▪ Read Committed: Snapshot taken for each 
read

▪ Repeatable Read: Snapshot taken upon first 
read

▪ See MySQL Consistent Reads:

▪ https://dev.mysql.com/doc/refman/8.0/en/innodb-
consistent-read.html



15-28

Python and Transactions

▪ Connection object has commit() and 

rollback() methods

▪ Failure to use commit() means that no 

insert/update/delete results will be 

committed to database

▪ Can turn on autocommit to avoid using 

commit() and rollback()



15-29

Summary

▪ Transaction: user-defined collection of work

▪ DBMSs support ACID properties

▪ Knowledge of concurrency control and recovery 

important for managing databases

▪ Transaction design issues are important

▪ Transaction processing is an important part of 

workflow management


