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Chapter 15

Transaction Management
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Outline 

▪ Transaction basics

▪ Concurrency control

▪ Transaction design issues

▪ Workflow management
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Transaction Definition

▪ Collection of database operations 

processed as one logical unit of work

▪ Prevents lost data due to

▪ Interference among concurrent users

▪ Failures

▪ Supports daily operations of an 

organization
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ATM Example 

(No Transaction)
CREATE PROCEDURE withdraw(IN id INT, IN amt NUMERIC(18,2)) 

BEGIN

DECLARE curamt numeric(18,2)

SELECT balance INTO curamt 

FROM account WHERE account_id = id;

IF NOT curamt IS NULL THEN

IF curamt - amt >= 0 THEN

UPDATE account SET balance = curamt - amt 

WHERE account_id = id;

END IF;

END IF; 

END;

What can go wrong if 

two people execute 

this procedure against 

the same account, 

simultaneously?

account_id balance

100 5000.00

101 3000.00

account
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ATM Transaction Example

CREATE PROCEDURE withdraw(IN id INT, IN amt NUMERIC(18,2)) 

BEGIN

DECLARE curamt numeric(18,2)

START TRANSACTION;

SELECT balance INTO curamt 

FROM account WHERE account_id = id;

IF NOT curamt IS NULL THEN

IF curamt - amt >= 0 THEN

UPDATE account SET balance = curamt - amt 

WHERE account_id = id;

END IF;

END IF; 

COMMIT;

END;
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Transaction Properties

▪ Atomic

▪ All updates in a given transaction either 

succeed or fail as a unit

▪ Consistent

▪ Because of the atomic and isolated 

properties, a properly designed transaction is 

guaranteed to take the database from one 

valid state to another
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Transaction Properties

▪ Isolated

▪ When transactions run concurrently, one 

transaction cannot "see" updates made by 

another concurrent transaction

▪ Durable

▪ A transaction's updates persist upon 

completion, even if certain types of system 

failure occur
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Concurrency Control

▪ Problem definition

▪ Concurrency control problems

▪ Concurrency control tools
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Concurrency Control Problem

▪ Objective: 

▪ Maximize throughput: number of 

transactions processed per unit time

▪ Constraint: 

▪ No interference between transactions

▪ Effect should be the same as if transactions 

were executed sequentially
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Lost Update Problem

Transaction A Time Transaction B 

Read SR (10) T1  

 T2 Read SR (10) 

   SR = SR -1  T3  

 T4    SR = SR -1  

Write SR (9) T5  

 T6 Write SR (9) 
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Dirty Read Problem

Transaction A Time Transaction B 

Read SR (10) T1  

SR = SR - 1 T2  

Write SR  (9) T3  

 T4 Read SR (9) 

ROLLBACK T5  
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Phantom Reads

▪ Interference causes inconsistency among 

multiple retrievals of a subset of data

▪ Examples:

▪ Incorrect summary 
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Preventing Concurrency 

Problems
▪ Two approaches:

▪ Pessimistic (using locking)

▪ Optimistic (using versioning)
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Locking Fundamentals

▪ Obtain lock before accessing an item

▪ Wait if a conflicting lock is held

▪ Shared lock: blocks exclusive locks

▪ Exclusive lock: blocks shared and exclusive 

locks
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Two Phase Locking

Within a transaction:

▪ Database acquires 

▪ shared locks for SELECT statements

▪ exclusive locks for 

INSERT/UPDATE/DELETE statements

▪ Locks are held until COMMIT / 

ROLLBACK
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Deadlock (Mutual Waiting)

Transaction A Time Transaction B 

XLock SR1 T1  

 T2 XLock SR2 

XLock SR2 (wait) T3  

 T4 XLock SR1 (wait) 
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Isolation Levels

▪ Degree to which a transaction is separated 
from the actions of other transactions

▪ Balance concurrency control overhead 
with interference problems

▪ Some transactions can tolerate 
uncommitted dependency and inconsistent 
retrieval problems

▪ Use the SET TRANSACTION ISOLATION 
LEVEL statement
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SQL Isolation Levels

Level XLocks SLocks Interference

Read 

uncommitted

Long None All

Read 

committed

Long Short All except dirty 

read

Repeatable 

read

Long Long Phantom reads

Serializable Long Long None
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Improving Transaction 

Performance
▪ Adjust transaction boundaries

▪ Reorder transaction operations
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Adjust Transaction Boundaries

▪ START TRANSACTION;

SELECT * FROM ...

... prompt user for info ...

UPDATE ...

COMMIT TRANSACTION

▪ Including user interaction in transaction 

boundaries is never a good idea
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Adjust Transaction Boundaries

▪ Break original transaction into two:

START TRANSACTION;

SELECT * FROM ... ;

COMMIT;

... prompt user for info ...

START TRANSACTION;

SELECT * FROM ... ; -- still ok to proceed?

UPDATE ... ;

COMMIT TRANSACTION;
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Reorder Transaction Operations

Attempt #1

START TRANSACTION;

SELECT balance 

FROM account 

WHERE id = ?;

IF balance – amt_withdraw < 0

ROLLBACK

ELSE

UPDATE account

SET balance = balance – amt_withdraw

WHERE id = ?;

COMMIT

END IF

Attempt #2
START TRANSACTION;

UPDATE account

SET balance = balance – amt_withdraw

WHERE id = ?;

SELECT balance 

FROM account 

WHERE id = ?;

IF balance < 0

ROLLBACK

ELSE

COMMIT

END IF
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Reordering Operations

▪ What isolation levels are required for the 

transactions on the previous slide to work 

properly?
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MySQL Demo Script
SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE;

START TRANSACTION;

SELECT * FROM account WHERE id = 101;

UPDATE account SET balance = balance - 100 WHERE id = 101;

COMMIT;
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Optimistic Approaches

▪ Assumes conflicts are rare

▪ No locks

▪ Often uses row versioning

▪ Check for conflicts

▪ After each read and write, or

▪ At end of transaction

▪ Evaluation

▪ Less overhead, but more performance 
variation
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MySQL Concurrency Control

▪ Hybrid Approach

▪ Writes place exclusive locks

▪ Reads use both versioning and shared 

locks

▪ Read Committed and Repeatable Read: 

Versioning

▪ Serializable: Shared locks
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MySQL Multi-Row Versioning

▪ MySQL takes a "snapshot" of rows to provide 
a consistent read for transactions running in 
Read Committed and Repeatable Read

▪ Read Committed: Snapshot taken for each 
read

▪ Repeatable Read: Snapshot taken upon first 
read

▪ See MySQL Consistent Reads:

▪ https://dev.mysql.com/doc/refman/8.0/en/innodb-
consistent-read.html



15-28

Python and Transactions

▪ Connection object has commit() and 

rollback() methods

▪ Failure to use commit() means that no 

insert/update/delete results will be 

committed to database

▪ Can turn on autocommit to avoid using 

commit() and rollback()
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Summary

▪ Transaction: user-defined collection of work

▪ DBMSs support ACID properties

▪ Knowledge of concurrency control and recovery 

important for managing databases

▪ Transaction design issues are important

▪ Transaction processing is an important part of 

workflow management


