
CONCURRENCY ISSUES

Stephen Schaub

1



Topics

 Server Concurrency Models

 Database Concurrency

2



Server Concurrency Models 

 Single-threaded Request-Response

 Multithreaded Request-Response

 Single-threaded Event Loop

3



Multithreaded Request-Response

http://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop

4



Single-Threaded Event Loop Model

 Components:

 Event queue

 Main event loop

 Main event loop:

 While (running):

◼ Dequeue event from queue 

◼ (sleep if queue empty)

◼ Invoke callback to handle event

 Observations:

 Only one callback in your Node app runs at a time (no race conditions!)

 While a callback is running, nothing else can happen

5



Background I/O

 How does I/O occur in the background without threads?

 Solution: OS-level non-blocking I/O

 OS system calls provide both blocking and nonblocking I/O mechanisms

 Node leverages the nonblocking I/O mechanisms to allow the main thread 

to initiate an I/O request without waiting for it to complete

 Node’s main event loop checks to see if I/O has completed and adds events 

to the event queue

6



The Full Story

 Node uses the cross-platform library libuv to implement its event loop

 libuv uses OS-specific mechanisms to perform non-blocking I/O

 All supported OS’s can do non-blocking network I/O

 Not all do non-blocking file I/O

 libuv uses a thread pool to implement non-blocking file I/O

7



Database Concurrency8



Database Concurrency
9

 What happens when two requests issue database queries?

 Depends on the database driver

 Sqlite: Each query is executed on a separate background thread

 MySql: Depends on connection management strategy



Database Connection Management Strategies
10

 All requests serviced by single connection

 Each request serviced by a separate connection

 Connection pooling



Single Shared Connection
11

 See nodejs/mysql_demos/nonpooled.js

 A MySQL connection can be used to execute only 1 query at a time

 Concurrent attempts to use the connection are serialized

 Performance implications?

 Issue: Stale connection

 Database server may terminate connection if it is unused for a period of 

time



One Connection Per Request
12

 See lab3/webapp example

 For each incoming request:

 Open a new database connection

 Use connection to handle request

 Close the connection

 Issues?



Connection Pooling
13

 See nodejs/mysql_demos/pooled.js

 Driver maintains a pool of lazily created connections

 pool.getConnection() returns an available connection from pool

 If pool capacity is reached, additional calls to getConnection() are queued 

until a connection becomes available

 Client code must call release() to return connection to pool

 Failure to call release() results in resource leak



Database Transactions
14

 Recall: A database transaction is a series of SQL commands that begin 

with START TRANSACTION and end with COMMIT:

START TRANSACTION;

SELECT * FROM FOO;

UPDATE FOO SET BLAH = BLAH + 1 WHERE OOMPH = 15;

COMMIT;

 When do you need a transaction?



When Transactions are Needed
15

 Handling a request requires two or more SQL commands

 If interference by concurrent execution of other SQL commands could 

result in incorrect results, you need a transaction

 Example: 

 E-commerce application allows users to place orders for items

 Back order is not supported

 Placing an order involves, among other things:

◼ Verify adequate quantity available

◼ Decrement quantity available


