
INTRODUCTION TO DOCKER

Stephen Schaub

Application Dependencies

 Modern web applications rely on several components and related configuration

 Operating system

 Language Runtime

 Third Party Libraries

 Application Server

 Web Server

 Database Server

 Filesystem Permissions

 Applications are run in different environments

 Developer workstation

 QA Lab

 Deployment server

2

Dependency Matrix
3

 Keeping different application environments synchronized is a

challenge

Developer QA Deployment

Operating system ? ? ?

Language Runtime ? ? ?

Third Party Libraries ? ? ?

Application Server ? ? ?

Web Server ? ? ?

Database Server ? ? ?

Filesystem Permissions ? ? ?

Cargo Transport Pre-1960
4

From https://pointful.github.io/docker-intro

Solution: Intermodal Shipping Container
5

From https://pointful.github.io/docker-intro

Meet Docker
6

 A Container System for Applications

 A container consists of an application, together with its dependencies

 ... including OS, web server, database server, application server ...

 Can be deployed and run on almost any hardware platform with a

compatible OS

 Why Developers Care:

 Build once ... run “anywhere”

 A clean, safe, portable runtime environment for your app

What about Virtual Machines?
7

 We can package an application and its dependencies in a VM

 Don't VM's solve the dependency problem?

 Well, yes, but…

Containers
8

 A container is a package

containing an application with its

dependencies

 A single host OS can run multiple

containers...

 ... just like it can run multiple

applications ...

Containers
9

 The containers are logically

isolated from each other ...

 ... but make better use of shared

resources (CPU, RAM)

 ... and enable convenient

application deployment and

upgrade

Containers vs. Virtual Machines (Similarities)
10

 Both technologies:

 Run on a host OS (Windows / Linux)

 Provide a virtualized computing environment for applications

◼ Virtual OS, filesystem, RAM, CPU

 Can be started and stopped

 Admins can login and interactively manipulate environment

 Applications can access network

Containers vs. Virtual Machines (Differences)

 Heavyweight

 Boots in tens of seconds

 Overhead of full guest OS

 No application isolation between apps
running in VM

 Applications running in same VM can
interfere with each other

 Hard to keep application dependencies
separate

 No convenient application deployment /
upgrade

 Lightweight

 Starts in seconds (or milliseconds!)

 Very little overhead for each container

 Application isolation

 A container runs only one application

 Each application runs in its own isolated
environment, together with its own
dependencies

 Convenient application deployment and
upgrade

11

Virtual Machine Container

Containers vs. VM’s
12

From https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_497378.pdf

Containers vs. Virtual Machines
13

 Unlike traditional virtual machines, containers are:

 Designed for scripted deployment of applications

 Can be easily reset to a baseline state

 Can easily access host filesystem

Docker Concepts14

Key Docker Terms
15

 Image

 Basis of a Docker container. A virtual filesystem with initial container content.

 Container

 The image when running.

 Engine

 Software that manages containers.

 Handles networking and container filesystems.

 Registry

 Stores, distributes, and manages Images

Images and Containers
16

 Image

 A software package containing configuration and applications

 Must be installed on a local Docker host in order to run

 Defined using a Dockerfile

 Images can be versioned using tags

 Container

 An Image running in a Docker host (an “instantiated Image”)

 Multiple containers can be launched from the same Image

 Each has its own private filesystem

Docker Architecture
17

 Image

instantiated

to form

container

From https://resources.sei.cmu.edu/asset_files/Presentation/2017_017_001_497378.pdf

Docker Registry
18

 Contains a library of predefined Images

 Examples:

 hub.docker.com

 Amazon ECR

 Private registries

 Docker Registry provides these capabilities:

 You can create your own Image using an existing Image as a starting point

 You can publish your Images in the Registry to deploy to servers or other

developers

Using Docker19

Using Docker
20

 Installing Docker

 Linux: apt get

 Windows: Docker Desktop

 Interacting with Docker

 Command Line

 Docker Desktop GUI

 Visual Studio Code

Running Docker Containers
21

 Run a command in a container

 docker run ubuntu:22.04 cat /etc/passwd

What happens:

 Docker engine downloads ubuntu image tagged 18.04

 Docker engine starts container and executes command in the container

 Docker engine stops container

 Image is cached locally for subsequent launches

Command to runImage to launch

Interactive Containers
22

 Run an interactive shell in a container

 docker run -it ubuntu:22.04 bash

What happens:

 Docker engine starts a new container using ubuntu:22.04 image

 Docker engine starts bash shell in container

◼ -it option ("interactive terminal") allows container bash shell to interact with user terminal

 Container runs until bash process exits (when you press Ctrl-D or execute exit or
logout)

 Any changes you make to the container’s filesystem are discarded when container
exits

Developing with Docker
23

 Want to run the app you’re developing in Docker

 Problem: Docker can’t access the files on the host filesystem

 Solution: Mount files from the host into container’s private filesystem

using -v option

 Example 1:

 docker run -v /etc:/hostetc -t ubuntu:22.04 cat /hostetc/passwd

 Example 2: Run hello.js located in /home/ubuntu using image node

 docker run -v /home/ubuntu:/myapp node:latest \

node /myapp/hello.js

Host directory
Container mount point

Running Server Apps in Docker
24

 Server apps listen for incoming connections on a port

 Map ports in container to ports on host using -p option

 Example: Run webserver.js located in /home/ubuntu using image

node, mapping port 8888 in container to 80 on host

 docker run -p 80:8888 \

-v /home/ubuntu:/myapp node:latest \

node /myapp/webserver.js

Using Docker Compose
25

 Docker Compose provides a convenient way to

 Specify and configure an image to run

 Start and stop multiple containers at the same time

 Basic usage:

 Create a docker-compose.yml file

 Start container with

◼ docker compose up (run in foreground)

◼ docker compose up -d (run in background)

docker-compose.yml

 Defines one or more “services”

(containers)

 Each service specifies:

 image to run

 image configuration (ex. command to run in

the container)

 Launch container from image:

 docker compose up

 Container exits when command finishes

version: "2"

services:

my_node_container:

image: "node:9"

command: "node -v"

26

Running Server Applications

 Use ports configuration to map ports
on the host to ports in the container

 Use volumes option to specify a list
of directories to mount

 Run container using

 docker compose up -d

 View logs:

 docker compose logs -f

 Stop container using

 docker compose down

version: "2"
services:

my_node_container:
image: "node:latest"
working_dir: /app
volumes:

- ./:/app
ports:

- 80:8888
command: "node webserver.js"

27

Creating Images28

Layers
29

 Docker images are built using layers

 Images are built as follows:

 Start with base image

 Configure desired software for image using Dockerfile

 New image can be base for other images

Creating Images
30

 Images are defined in files named Dockerfile

 Dockerfile specifies

 Base image
◼ Example: FROM node:13.8.0

 Files to copy into new image
◼ COPY . /app

 Default work directory for containers launched from image
◼ WORKDIR /app

 Commands to run to configure new image
◼ RUN apt update && apt install mysql-client

 Default command to run for containers launched from image
◼ CMD node index.js

Building Images
31

 After creating Dockerfile, use docker build build to create an image

 docker build -t my_container /path/to/directory/with/Dockerfile

Demo Time32

Installation
33

 Install Docker Engine on Ubuntu 18.04

 sudo apt install docker.io

 (Optional) Add your user account to docker group in /etc/group

 Allows you to execute docker commands without “sudo”

34

 docker-compose down --rmi local

 -v removes the volume (containing the database)

