
S T E P H E N S C H A U B

JavaScript: The Language

Topics

 Language Overview

 Variables and Types

 Operators and Expressions

 Statements

2

What is JavaScript

 "The World's Most Misunderstood Programming Language"
 - Douglas Crockford

 Contains many good ideas and some horrible ones

 Used by a wide range of programmers
 From computer scientists to cut-n-pasters

3

Language Introduction

 Invented by Brendan Eich at Netscape

 Standardized as ECMAScript

 Popular implementations
 V8 (Google Chrome, Node.js, Edge)

 Chakra (IE)

 Nashorn (Java)

 Latest version: ECMAScript 2018 (Edition 9)
 Browser support varies

4

JavaScript Outside the Browser

 Use JavaScript to
 Write Windows shell scripts (since Windows 98)

 Script popular apps (Adobe Creative Suite, OpenOffice)

 Write server-side apps (Node.js)

5

Birth of JavaScript

 Netscape hired Eich to design LiveScript

 Eich wanted to write a Scheme interpreter

 Netscape wanted a language for the masses

 Eich had 10 days

 JavaScript was born

 Eich was CTO at Mozilla Corporation until 2014

6

Language Overview

 Dynamic scripting language featuring
 C syntax

 Smalltalk / LISP semantics

 Object oriented
 Prototypes and (more recently) Classes

 Functional features

7

Standard Library

 Extremely small
 Math methods

 String, Array, Date, RegExp objects

 No I/O mechanisms
 Completely dependent on API provided by hosting environment for UI concerns

 console.log() is available in browser and server environments for debugging

 Today, the language only

8

Syntax Basics

 Case sensitive

 Freeform syntax

 C++ style comments

 Semicolon statement terminator optional
 Best practice: Use semicolons

9

Data Types
10

Data Types

 String
 "Something in quotes" (single or double)

 Number
 Floating-point values

 No integer type

 Boolean
 true, false

 Null
 null

 Object / Array

 Function

11

Value Types vs. Reference Types

 Like Java/C#:
 Numbers and Booleans are value types

 Other types are reference types

 Example:
 var arr = new Array();

var arr2 = arr; // arr2 has a reference to arr's array
arr2[0] = 25; // alters the single array referenced by arr / arr2

12

Numbers

 JavaScript represents all numbers as floating point

 Special value NaN results from illegal numeric operations
 Use isNaN(value) to test for this value

13

Strings

 String literals use either single or double quotes
 No separate char type

 C-style Escape sequences
Escape Sequence Character Meaning

\ddd 0ddd octal character

\xdd 0xdd hexadecimal character

\\ \ backslash

\' ' single quote

\“ ” double quote

\b BS backspace

\f FF form feed

\n NL or LF new line (or line feed)

\r CR carriage return

\t HT horizontal tab

\ <new line> continuation

14

String Operations

 Concatenate strings:
 str1 + str2

 Determine length of string:
 str.length

 Access character at index:

 str[index]

 Extract substring:
 str.substring(start, len)

 Compare strings:
 str1 < str2

15

Numbers

 JavaScript represents numbers internally as floating point values

 Convert string to number
 parseInt(str)

 parseFloat(str)

16

Boolean

 Literal values: true, false

 Other values are interpreted as boolean by if / while
 Interpreted as false:

 0, -0, null, "", false, undefined, NaN

 Other values are true:

 Any nonempty string (including "0" and "0.0")

 Nonzero number

 Any array or object

17

18

Variables

Variables and Types

 Like Python, variables don't have types…

 Values do.

 Variables can hold values of different types over their lifetime
myvar = 5; // it's a double now

myvar = "5"; // it's a string now

myvar = null; // it's a null now

19

Defining Variables

Three ways to define variables:

 let statement (preferred)
 let z; // define

 let z = 5; // define and initialize

 var statement

 var x;

 var x = 10;

 assignment statement
 y = 0; // creates y if it does not exist

20

undefined vs. null

 JavaScript includes two related values:
 undefined - the default value for uninitialized variables

 null - used to indicate the explicit absence of a value

 The following are different:
 let myvar; // myvar's value is undefined

 let myvar = null; // myvar's value is null

21

Undeclared vs. Undefined

 Using undeclared variables in an expression causes a runtime error
x = y + 1; // causes crash if y is undeclared

 Using a variable with value undefined is legal
let x;
let y = x; // stores value undefined in y

22

Variable Scope

 var supports only two scope levels
 Creates a global when used outside a function

 Creates a local when used inside a function

 let supports block scoping

 Assignment to an undeclared variable always creates a global

 x = 0; // if x undeclared, creates global

23

Locals vs. Globals

 Create a global variable #1 (preferred):
let x;
function foo() {

console.log (x); // legal - "undefined"
}

 Create a global variable #2:
x = 5;
function foo() {

console.log (x); // 5
}

24

Locals vs. Globals

 Create a global variable #3 (ugh):
function foo() {

x = 5;
}
foo();
console.log(x); // 5

 Create a local variable:
x = 5;
function foo() {

let x = 10;
console.log(x); // 10

}
foo();
console.log(x); // 5

25

Avoid using var

 Local variables defined with var are always implicitly "hoisted" to the
top of a function
 But the initialization occurs on the line where it is written

 Leads to confusing behavior
var scope = "global";

function f() {
alert(scope); // Displays "undefined", not "global"
var scope = "local"; // Variable initialized here
alert(scope); // Displays "local"

}
f();

26

Variable Definition Recommendations

 Staying out of trouble with variables:
 Prefer defining variables with let

 Better yet: Use "Strict" mode

27

Strict Mode
28

 Put at top of script:
 "use strict"; // include the quotes

 Requires all variables be defined with var or let

 Turns undesirable behavior into errors, and reduces the number of
unwanted surprises

 For details:

 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Operators and Expressions

29

Operators

 C-style operators for
 Assignment

 Math

 Comparison

 Logic

 Bit

30

Addition vs. Concatenation

 JavaScript uses + for both addition and concatenation
 An unfortunate design choice

 var x = y + z;
 If either y or z is a string (or object), concatenation occurs

 If both are numeric, addition occurs

 To prevent problems, use parseInt() / parseFloat() when uncertain
about the value
 var x = parseInt(y) + parseInt(z);

31

Comparing Values

 JavaScript provides the usual C-style comparison operators:
== equal != not equal

< less than <= less than or equal to

> greater than >= greater than or equal to

 Things work as expected when the two values being compared are the
same type

 The plot thickens when different types are involved

32

JavaScript Coercion

 Consider:
 val1 = prompt("Enter a number:"); // user enters nothing

if (val1 == 0) {
/* surprise - they are equal!! */

}

 The rules for JavaScript type coercion in comparison operations are
arcane and hard to remember
 A common source of tricky bugs

33

Equals vs. Identical

 Safer approach: Use
 === identical

 true only if both values are same type and value

 !== not identical

 the logical negation of identical

 Example:
 if (val1 === 0) { /* true only if val1 is the number 0 */ }

 Douglas Crockford:
 Prefer === and !==

 Think of == and != as the "evil twins" of === and !==

34

Logical Operators

 C-style:
 ! Not

 && And

 || Or

 && and || are short-circuiting

 yield operand values

 Example:
 var max = max_width || preferences.max_width || 500;

 Idiomatic usage: selects first value that is defined and not null

35

Statements
36

Statements

 JavaScript provides C++/Java-style control statements:
 if / else

 while

 do while

 for

 switch

 try / catch / finally

37

for loops

 Two forms:
 for (initialize ; test ; increment) { body }

 for (let i = 0; i < 5; ++i) { … }

 for (variable in object) { body }

 for (let prop in obj) { … }

38

try / catch / finally

 Syntax:
 try {

// guarded statements
}
catch (e) {

// exception handler
}
finally {

// cleanup code
}

 Only one catch block allowed

 finally block guaranteed to execute

 Exception parameter receives object thrown by throw statement

39

throw

 Raises an exception

 Works like Java/C#
 throw new Error("Can't do that!");

40

