
PASSWORD MANAGEMENT

Stephen Schaub



Topics
2

 Basic Password Issues

 Password Encryption

 Password Reset

 Persistent Authentication (Remember Me)



Basic Password Issues
3

 How complex should passwords be?

 How should passwords be stored on server?

 When should a user be required to re-authenticate?



Basic Password Recommendations
4

 From OWASP Authentication Cheat Sheet:

 Minimum password length should be enforced 

 Permit long passwords

 Require re-authentication for sensitive features

 Display non-specific authentication failure messages

 Design login forms friendly to password managers

 Further reading:

 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/A

uthentication_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md


Third-Party Authentication Systems
5

 Handle password management for you

 Examples:

 OAuth 

 OpenId

 SAML



Password Encryption6



Password Encryption
7

 Many developers understand that passwords should be stored in the 

database in encrypted form

 Why?

 How should a password be encrypted?

 Standard encryption algorithm?

 Custom encryption algorithm?



Store Hashed Passwords
8

 You should assume that your password database may be compromised 

at some point

 Want to make it hard for the attacker to leverage the encrypted 

password data

 Key Idea: Rather than storing encrypted passwords, store hashed 

passwords



Hashing 101
9

 Hash function

 Maps input string to fixed-size output

 Called "one-way" or "trap door" functions because the original value cannot be 
easily recovered from the hash value

Example:
function hash(str) {
let result = 0
for (let i = 0; i < str.length; ++i) {

result = (result + str.charCodeAt(i)) % 256
}
return result

}



Hash Collision
10

 Since arbitrarily large inputs hash to fixed-length values, it is possible 

that two distinct inputs can hash to the same output value

 This is called a Hash Collision

 Some hash functions (ex. MD5) have weak security guarantees and 

small output sizes

 Relatively easy to calculate two values with the same MD5 hash

 How could attackers leverage this?



Cryptographic Hash Functions
11

 A cryptographic hash function is designed so that a small change to 

the input string results in a significant change in the output

hash("sha256", "");

// e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

hash("sha256", "The quick brown fox jumps over the lazy dog");

// d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592

hash("sha256", "The quick brown fox jumps over the lazy cog");

// e4c4d8f3bf76b692de791a173e05321150f7a345b46484fe427f6acc7ecc81be



Node.js Cryptographic Hash
12

 The built-in crypto module provides cryptographic hash functions

var crypto = require('crypto')

function hash(algorithm, value) {

return crypto.createHash(algorithm).update(value).digest('hex')

}



Hashing Passwords: Example #1
13

 User registers password

var crypto = require('crypto')

pwd = req.body.password

var hashedPwd = hash('sha256', pwd)

// store hashedPwd in user table in database

 Login verification:

pwd = req.body.password

var hashedPwd = hash('sha256', pwd)

// compare hashedPwd with value stored in database



Example #1 Analysis
14

 Strengths:

 Simple to implement

 Original password cannot be easily recovered from hash

 Attacks:

 Dictionary attack

 Brute-force attack



Example #2: Adding Salt
15

 A salt is random data added to the password before it is hashed

 Salt is stored in the user table in unencrypted form

 The randomness and length of the salt are important

 Use a cryptographic random number generator

Username Salt Hashed value = hash('sha256', Salt + unencrypted_password)

fred F2C2A523 72AE25495A7981C40622D49F9A52E4F1565C90F048F59

george A1B2C324 91BC35495A7981C40622D49F9A52E4F1565C90F048F61



Example #3: Cost Factor
16

 We want computing password hashes to take some time

 Why?

 Password hash algorithms allow developer to specify a cost parameter 

that controls how much time the hash computation requires

 Examples: Argon2, bcrypt

 OWASP suggests selecting a cost parameter that results in a 1 second 

computation time



Cryptographic Hash vs. Password Hash

 Fast

 Only one input (password)

 Intentionally slow

 At least three inputs:

 Password

 Per-user salt

 Cost factor

17

Cryptographic Hash Password Hash



PHP
18

 See https://secure.php.net/password_hash

 A single convenience function

 Computes secure random hash

 Combines with password and hashes result

 Returns a value that incorporates algorithm, cost factor, and salt

https://secure.php.net/password_hash


Key Ideas
19

 Do not:

 Store the password in a database/file in plaintext

 Encrypt the password using a home-grown encryption system

 Store the password using any encryption system that allows the original 

password to be recovered

 Do:

 Store the password using an official encryption algorithm that does not 

allow the original password to be recovered

 Make it difficult for hackers that acquire the encrypted passwords to be 

able to guess the originals using brute-force or dictionary attacks



Additional Reading
20

 OWASP Password Storage Cheat Sheet
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/P
assword_Storage_Cheat_Sheet.md

 You Wouldn't Base64 a Password
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-
cryptography-decoded

 Libsodium: Cross-platform, cross-language library for password hashing and 
cryptography
https://github.com/jedisct1/libsodium

 Safely Storing Passwords in several programming languages
https://paragonie.com/blog/2016/02/how-safely-store-password-in-
2016

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://github.com/jedisct1/libsodium
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016


Password Reset21



Password Reset
22

 Most systems need a “Forgot Password” system

 How should it work?

 Email a new random password to user, or require user to create his own new 

password?

 Use security questions?

 How should the flow work?



Password Reset Best Practice
23

 OWASP Forgot Password Cheat Sheet guidelines:

1. Collect security questions when user registers initially.

2. When user begins Forgot Password procedure, request answers to security 

questions.

3. Do not generate a new password and send to user. Instead:

4. Lock user’s account and send a randomly generated code to side channel 

(email or SMS). Code should have a short expiration time frame.

5. Allow user to change password within current session after entering 

randomly generated code.



Password Reset
24

 Further Reading

 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/F

orgot_Password_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md


Persistent Authentication (Remember Me)25



Persistent Authentication (Remember Me)
26

 Problem: 

 After client authenticates, need to associate client with the authenticated 

account for a session that survives browser shutdowns



Non Solution: Session State
27

 Advantages:

 Reasonably secure

 Disadvantages:

 Session mechanisms are not very scalable

 User must reauthenticate when session expires



Roll-Your-Own Solution
28

 Store an authentication token in a persistent cookie that associates 

browser with an authenticated user

 Security considerations:

 Must prevent attacker from generating a token to impersonate an arbitrary 

user

◼ Encrypt the authentication token

 Attacker that obtains cookie can impersonate user until cookie expires

◼ When user attempts to perform a sensitive operation, require reauthentication



Industry Solution: JSON Web Tokens
29

 A JSON web token is an authentication token in a standardized JSON 

format

 Token contains unencrypted data, cryptographically signed to ensure 

no tampering

 Can be used to associate a client with an authenticated user

 Supports a stateless authentication mechanism that allows a login 

session to persist securely across browser restarts

 JWT libraries available for the major web frameworks



JSON Web Tokens: How it works
30

 On authentication, server generates a signed token ("access token") 

that is associated with the authenticated user account

 Browser stores access token in persistent cookie or local storage

 Browser sends access token with each request

 Server uses access token to associate request with user account

 See examples/jwt



JWT Cookie Format
31

 Header + Payload + Data

 See jwt.io for details



JSON Web Tokens: Security Issues
32

 Problem: If attacker steals token, can impersonate user until token 

expires

 Token should have short lifetime

 Problem: We don't want user to have to reauthenticate when token 

expires



JSON Web Tokens
33

 On authentication, server generates two encrypted tokens:

 Short-lived access token

 Long-lived refresh token

 Browser stores tokens in cookies or local storage

 Sends access token with each request

 Server uses authentication token to associate request with user account

 When access token expires, server rejects request

 Client code sends refresh request with refresh token

 Server validates refresh token and generates new authentication token

 Example: https://www.geeksforgeeks.org/jwt-authentication-with-refresh-
tokens/



Refresh Token Issues
34

 What if attacker steals refresh token?

 Can impersonate user for a longer period

 Access token is sent with every request; greater opportunity to steal

 Refresh token is sent rarely; lower opportunity to steal

 Application should provide a way to invalidate tokens on user logout

 Maintain a block list



Further Reading
35

 https://jwt.io/introduction

 https://docs.joshuatz.com/cheatsheets/security/jwt/

 https://www.digitalocean.com/community/tutorials/nodejs-jwt-

expressjs

https://jwt.io/introduction
https://docs.joshuatz.com/cheatsheets/security/jwt/
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs

