
PASSWORD MANAGEMENT

Stephen Schaub



Topics
2

 Basic Password Issues

 Password Encryption

 Password Reset

 Persistent Authentication (Remember Me)



Basic Password Issues
3

 How complex should passwords be?

 How should passwords be stored on server?

 When should a user be required to re-authenticate?



Basic Password Recommendations
4

 From OWASP Authentication Cheat Sheet:

 Minimum password length should be enforced 

 Permit long passwords

 Require re-authentication for sensitive features

 Display non-specific authentication failure messages

 Design login forms friendly to password managers

 Further reading:

 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/A

uthentication_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md


Third-Party Authentication Systems
5

 Handle password management for you

 Examples:

 OAuth 

 OpenId

 SAML



Password Encryption6



Password Encryption
7

 Many developers understand that passwords should be stored in the 

database in encrypted form

 Why?

 How should a password be encrypted?

 Standard encryption algorithm?

 Custom encryption algorithm?



Store Hashed Passwords
8

 You should assume that your password database may be compromised 

at some point

 Want to make it hard for the attacker to leverage the encrypted 

password data

 Key Idea: Rather than storing encrypted passwords, store hashed 

passwords



Hashing 101
9

 Hash function

 Maps input string to fixed-size output

 Called "one-way" or "trap door" functions because the original value cannot be 
easily recovered from the hash value

Example:
function hash(str) {
let result = 0
for (let i = 0; i < str.length; ++i) {

result = (result + str.charCodeAt(i)) % 256
}
return result

}



Hash Collision
10

 Since arbitrarily large inputs hash to fixed-length values, it is possible 

that two distinct inputs can hash to the same output value

 This is called a Hash Collision

 Some hash functions (ex. MD5) have weak security guarantees and 

small output sizes

 Relatively easy to calculate two values with the same MD5 hash

 How could attackers leverage this?



Cryptographic Hash Functions
11

 A cryptographic hash function is designed so that a small change to 

the input string results in a significant change in the output

hash("sha256", "");

// e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

hash("sha256", "The quick brown fox jumps over the lazy dog");

// d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592

hash("sha256", "The quick brown fox jumps over the lazy cog");

// e4c4d8f3bf76b692de791a173e05321150f7a345b46484fe427f6acc7ecc81be



Node.js Cryptographic Hash
12

 The built-in crypto module provides cryptographic hash functions

var crypto = require('crypto')

function hash(algorithm, value) {

return crypto.createHash(algorithm).update(value).digest('hex')

}



Hashing Passwords: Example #1
13

 User registers password

var crypto = require('crypto')

pwd = req.body.password

var hashedPwd = hash('sha256', pwd)

// store hashedPwd in user table in database

 Login verification:

pwd = req.body.password

var hashedPwd = hash('sha256', pwd)

// compare hashedPwd with value stored in database



Example #1 Analysis
14

 Strengths:

 Simple to implement

 Original password cannot be easily recovered from hash

 Attacks:

 Dictionary attack

 Brute-force attack



Example #2: Adding Salt
15

 A salt is random data added to the password before it is hashed

 Salt is stored in the user table in unencrypted form

 The randomness and length of the salt are important

 Use a cryptographic random number generator

Username Salt Hashed value = hash('sha256', Salt + unencrypted_password)

fred F2C2A523 72AE25495A7981C40622D49F9A52E4F1565C90F048F59

george A1B2C324 91BC35495A7981C40622D49F9A52E4F1565C90F048F61



Example #3: Cost Factor
16

 We want computing password hashes to take some time

 Why?

 Password hash algorithms allow developer to specify a cost parameter 

that controls how much time the hash computation requires

 Examples: Argon2, bcrypt

 OWASP suggests selecting a cost parameter that results in a 1 second 

computation time



Cryptographic Hash vs. Password Hash

 Fast

 Only one input (password)

 Intentionally slow

 At least three inputs:

 Password

 Per-user salt

 Cost factor

17

Cryptographic Hash Password Hash



PHP
18

 See https://secure.php.net/password_hash

 A single convenience function

 Computes secure random hash

 Combines with password and hashes result

 Returns a value that incorporates algorithm, cost factor, and salt

https://secure.php.net/password_hash


Key Ideas
19

 Do not:

 Store the password in a database/file in plaintext

 Encrypt the password using a home-grown encryption system

 Store the password using any encryption system that allows the original 

password to be recovered

 Do:

 Store the password using an official encryption algorithm that does not 

allow the original password to be recovered

 Make it difficult for hackers that acquire the encrypted passwords to be 

able to guess the originals using brute-force or dictionary attacks



Additional Reading
20

 OWASP Password Storage Cheat Sheet
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/P
assword_Storage_Cheat_Sheet.md

 You Wouldn't Base64 a Password
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-
cryptography-decoded

 Libsodium: Cross-platform, cross-language library for password hashing and 
cryptography
https://github.com/jedisct1/libsodium

 Safely Storing Passwords in several programming languages
https://paragonie.com/blog/2016/02/how-safely-store-password-in-
2016

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://github.com/jedisct1/libsodium
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016


Password Reset21



Password Reset
22

 Most systems need a “Forgot Password” system

 How should it work?

 Email a new random password to user, or require user to create his own new 

password?

 Use security questions?

 How should the flow work?



Password Reset Best Practice
23

 OWASP Forgot Password Cheat Sheet guidelines:

1. Collect security questions when user registers initially.

2. When user begins Forgot Password procedure, request answers to security 

questions.

3. Do not generate a new password and send to user. Instead:

4. Lock user’s account and send a randomly generated code to side channel 

(email or SMS). Code should have a short expiration time frame.

5. Allow user to change password within current session after entering 

randomly generated code.



Password Reset
24

 Further Reading

 https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/F

orgot_Password_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md


Persistent Authentication (Remember Me)25



Persistent Authentication (Remember Me)
26

 Problem: 

 After client authenticates, need to associate client with the authenticated 

account for a session that survives browser shutdowns



Non Solution: Session State
27

 Advantages:

 Reasonably secure

 Disadvantages:

 Session mechanisms are not very scalable

 User must reauthenticate when session expires



Roll-Your-Own Solution
28

 Store an authentication token in a persistent cookie that associates 

browser with an authenticated user

 Security considerations:

 Must prevent attacker from generating a token to impersonate an arbitrary 

user

◼ Encrypt the authentication token

 Attacker that obtains cookie can impersonate user until cookie expires

◼ When user attempts to perform a sensitive operation, require reauthentication



Industry Solution: JSON Web Tokens
29

 A JSON web token is an authentication token in a standardized JSON 

format

 Token contains unencrypted data, cryptographically signed to ensure 

no tampering

 Can be used to associate a client with an authenticated user

 Supports a stateless authentication mechanism that allows a login 

session to persist securely across browser restarts

 JWT libraries available for the major web frameworks



JSON Web Tokens: How it works
30

 On authentication, server generates a signed token ("access token") 

that is associated with the authenticated user account

 Browser stores access token in persistent cookie or local storage

 Browser sends access token with each request

 Server uses access token to associate request with user account

 See examples/jwt



JWT Cookie Format
31

 Header + Payload + Data

 See jwt.io for details



JSON Web Tokens: Security Issues
32

 Problem: If attacker steals token, can impersonate user until token 

expires

 Token should have short lifetime

 Problem: We don't want user to have to reauthenticate when token 

expires



JSON Web Tokens
33

 On authentication, server generates two encrypted tokens:

 Short-lived access token

 Long-lived refresh token

 Browser stores tokens in cookies or local storage

 Sends access token with each request

 Server uses authentication token to associate request with user account

 When access token expires, server rejects request

 Client code sends refresh request with refresh token

 Server validates refresh token and generates new authentication token

 Example: https://www.geeksforgeeks.org/jwt-authentication-with-refresh-
tokens/



Refresh Token Issues
34

 What if attacker steals refresh token?

 Can impersonate user for a longer period

 Access token is sent with every request; greater opportunity to steal

 Refresh token is sent rarely; lower opportunity to steal

 Application should provide a way to invalidate tokens on user logout

 Maintain a block list



Further Reading
35

 https://jwt.io/introduction

 https://docs.joshuatz.com/cheatsheets/security/jwt/

 https://www.digitalocean.com/community/tutorials/nodejs-jwt-

expressjs

https://jwt.io/introduction
https://docs.joshuatz.com/cheatsheets/security/jwt/
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs

