PASSWORD MANAGEMENT




Topics

Basic Password Issues
Password Encryption
Password Reset

Persistent Authentication (Remember Me)




Basic Password Issues

How complex should passwords be?
How should passwords be stored on server?

When should a user be required to re-authenticate?




Basic Password Recommendations

From OWASP Authentication Cheat Sheet:
Minimum password length should be enforced
Permit long passwords
Require re-authentication for sensitive features
Display non-specific authentication failure messages
Design login forms friendly to password managers

Further reading:



https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Authentication_Cheat_Sheet.md

Third-Party Authentication Systems

1 Handle password management for you

1 Examples:
= OAuth
o1 Openld
0 SAML




Password Encryption




Password Encryption

Many developers understand that passwords should be stored in the
database in encrypted form

Why?
How should a password be encrypted?

Standard encryption algorithm?

Custom encryption algorithm?




Store Hashed Passwords

You should assume that your password database may be compromised
at some point

Woant to make it hard for the attacker to leverage the encrypted
password data

Key ldea: Rather than storing encrypted passwords, store hashed
passwords




Hashing 101

Hash function
Maps input string to fixed-size output

Called "one-way" or "trap door" functions because the original value cannot be
easily recovered from the hash value

Example:
function hash(str) {
let result = 0
for (let i = 0; i < strlength; ++i) {
result = (result + str.charCodeAt(i)) % 256

}

return result

}




Hash Collision

Since arbitrarily large inputs hash to fixed-length values, it is possible
that two distinct inputs can hash to the same output value

This is called a Hash Collision
Some hash functions (ex. MD5) have weak security guarantees and
small output sizes

Relatively easy to calculate two values with the same MDJ5 hash

How could attackers leverage this?




Cryptographic Hash Functions

A cryptographic hash function is designed so that a small change to
the input string results in a significant change in the output

hash("sha256", "");

// e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
hash("sha256", "The quick brown fox jumps over the lazy dog");

// d7a8fbb307d7809469ca?abch0082e4f8d5651e46d3cdb762d02d0bf37c9e592

hash("sha256", "The quick brown fox jumps over the lazy cog");
// e4c4d8f3bf76b692de791a173e05321150f7a345b46484fed427fbacc7ecc81be




Node.js Cryptographic Hash

The built-in crypto module provides cryptographic hash functions

var crypto = require('crypto’)

function hash(algorithm, value) {
return crypto.createHash(algorithm).update(value).digest('hex')

}




Hashing Passwords: Example #1

User registers password
var crypto = require('crypto’)
pwd = reqg.body.password
var hashedPwd = hash('sha256’, pwd)

// store hashedPwd in user table in database

Login verification:

pwd = reqg.body.password
var hashedPwd = hash('sha256', pwd)

// compare hashedPwd with value stored in database




Example #1 Analysis

Strengths:
Simple to implement

Original password cannot be easily recovered from hash

Attacks:
Dictionary attack

Brute-force attack




Example #2: Adding Salt

A salt is random data added to the password before it is hashed

Salt is stored in the user table in unencrypted form

fred F2C2A523 72AE25495A7981C40622D49F9A52E4F1565C90F048F59
george A1B2C324 91BC35495A7981C40622D49F9A52E4F1565C90F048F61

The randomness and length of the salt are important

Use a cryptographic random number generator




Example #3: Cost Factor

We want computing password hashes to take some time

Why?
Password hash algorithms allow developer to specify a cost parameter
that controls how much time the hash computation requires

Examples: Argon2, bcrypt

OWASP suggests selecting a cost parameter that results in a 1 second
computation time




Cryptographic Hash vs. Password Hash

Cryptographic Hash Password Hash

01 Fast 01 Intentionally slow

71 Only one input (password) 01 At least three inputs:
o Password
=1 Per-user salt

=1 Cost factor




PHP

See

A single convenience function
Computes secure random hash
Combines with password and hashes result

Returns a value that incorporates algorithm, cost factor, and salt



https://secure.php.net/password_hash

Key Ideas

Do not:
Store the password in a database /file in plaintext
Encrypt the password using a home-grown encryption system

Store the password using any encryption system that allows the original
password to be recovered

Do:

Store the password using an official encryption algorithm that does not
allow the original password to be recovered

Make it difficult for hackers that acquire the encrypted passwords to be
able to guess the originals using brute-force or dictionary attacks




Additional Reading

OWASP Password Storage Cheat Sheet
You Wouldn't Base64 a Password
Libsodium: Cross-platform, cross-language library for password hashing and

cryptography

Safely Storing Passwords in several programming languages



https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Password_Storage_Cheat_Sheet.md
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://paragonie.com/blog/2015/08/you-wouldnt-base64-a-password-cryptography-decoded
https://github.com/jedisct1/libsodium
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016
https://paragonie.com/blog/2016/02/how-safely-store-password-in-2016

Password Reset




Password Reset

Most systems need a “Forgot Password” system

How should it work?

Email a new random password to user, or require user to create his own new
password?

Use security questions?

How should the flow work?




Password Reset Best Practice

OWASP Forgot Password Cheat Sheet guidelines:

Collect security questions when user registers initially.

When user begins Forgot Password procedure, request answers to security
questions.

Do not generate a new password and send to user. Instead:

Lock user’s account and send a randomly generated code to side channel
(email or SMS). Code should have a short expiration time frame.

Allow user to change password within current session after entering
randomly generated code.




Password Reset

01 Further Reading

O https: //github.com/OWASP /CheatSheetSeries /blob /master/cheatsheets /F
orgot Password Cheat Sheet.md



https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Forgot_Password_Cheat_Sheet.md

Persistent Authentication (Remember Me)




Persistent Authentication (Remember Me)

1 Problem:

After client authenticates, need to associate client with the authenticated
account for a session that survives browser shutdowns




Non Solution: Session State

Advantages:
Reasonably secure
Disadvantages:

Session mechanisms are not very scalable

User must reauthenticate when session expires




Roll-Your-Own Solution

Store an authentication token in a persistent cookie that associates
browser with an authenticated user

Security considerations:

Must prevent attacker from generating a token to impersonate an arbitrary
user

Encrypt the authentication token
Attacker that obtains cookie can impersonate user until cookie expires

When user attempts to perform a sensitive operation, require reauthentication




Industry Solution: JSON Web Tokens

A JSON web token is an authentication token in a standardized JSON
format

Token contains unencrypted data, cryptographically signed to ensure
no tampering

Can be used to associate a client with an authenticated user

Supports a stateless authentication mechanism that allows a login
session to persist securely across browser restarts

JWT libraries available for the major web frameworks




JSON Web Tokens: How it works

On authentication, server generates a signed token ("access token")
that is associated with the authenticated user account

Browser stores access token in persistent cookie or local storage
Browser sends access token with each request
Server uses access token to associate request with user account

See examples/jwt




JWT Cookie Format

1 Header + Payload + Data

1 See jwt.io for details




JSON Web Tokens: Security Issues

Problem: If attacker steals token, can impersonate user until token
expires

Token should have short lifetime
Problem: We don't want user to have to reauthenticate when token

expires




JSON Web Tokens

On authentication, server generates two encrypted tokens:
Short-lived access token
Long-lived refresh token

Browser stores tokens in cookies or local storage
Sends access token with each request

Server uses authentication token to associate request with user account
When access token expires, server rejects request

Client code sends refresh request with refresh token
Server validates refresh token and generates new authentication token

Example: https:/ /www.geeksforgeeks.org /jwt-authentication-with-refresh-
tokens /




Refresh Token Issues

What if attacker steals refresh token?
Can impersonate user for a longer period
Access token is sent with every request; greater opportunity to steal

Refresh token is sent rarely; lower opportunity to steal

Application should provide a way to invalidate tokens on user logout

Maintain a block list




Further Reading

https: / /jwt.io /introduction

https: / /docs.joshuatz.com /cheatsheets /security /jwt/

hitps: / /www.digitalocean.com /community /tutorials /nodejs-jwt-

express|s



https://jwt.io/introduction
https://docs.joshuatz.com/cheatsheets/security/jwt/
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs
https://www.digitalocean.com/community/tutorials/nodejs-jwt-expressjs

