UNICODE

Facts of Life

FOL #1: Computers store and transmit data in units of bytes

FOL #2: The world's languages require more than 256 characters
Single-byte encodings like ASCII map individual bytes to characters
All single-byte encodings pretend that FOL #2 doesn't exist

A Brief History of Encoding

1 byte per character schemes
ASCII
Code page systems

2 bytes per character schemes
Asian languages

Unicode

1-4 bytes per character

Unicode

Maps characters to code points
A code point is a unique number that signifies a particular character

Current count: Over 137,000 code points / characters
Code points 0-127 correspond to ASCIl code

Unicode Planes

Code points organized into 17 planes
Each plane can represent up to 65,535 code points

Plane O: Basic multilingual plane (BMP)
Characters for almost all modern languages; several symbols
16 supplementary "astral” planes
Historic languages
Music notation
Emoji
Room for over 1 million code points

Most will likely never be assigned

Unicode Encodings

Remember FOL #12 We need a way to represent code points using bytes.

Various encodings possible
UTF-8
UTF-16
UTF-32
UTF-32 can represent any possible code point in a single 4-byte value
Rarely used in practice (too inefficient)
Both UTF-8 (1 byte values) and UTF-16 (2 byte values) are variable-length
encoding systems
UTF-8 requires 1-4 bytes to represent a given code point

UTF-16 requires 2 or 4 bytes to represent a given code point

UTF-8

Most widely used encoding of Unicode

Requires 1-4 bytes to represent a given code point

48 | 69 e2 84 099 «c6 b4 e2 | 98 82 e2 84 8c

HTML Page Encoding

Content-type header can specify encoding

Content-Type: text /html; charset=utf-8

Document charset meta tag can specify encoding

<htm|>

<head>

<meta charset="utf-8">
</head>

Practical Problems

Variable-length encodings are memory-efficient, but not friendly for
random access

Consider a string APl that allows you to index a Unicode string:

for (var i = 0; i < str.length; ++i)
console.log(str[i])

What are the options for implementing this behavior?

Practical Problems

Some characters have multiple code point representations

Example: An accented e (é)
é (U+00E9)

or

e (U+0065) + accent (U+0301)

Example: The sequence fi

fi (U+FBO1)
or

f (U+0066) + i (U+0069)

Comparing Unicode strings for equality can be tricky

Case Folding

Problem: Need to compare two strings to see if they contain the same
letters, ignoring capitalization

With simple ASCII, case-insensitive comparisons are straightforward

Convert all letters in a string to the same capitalization (“case fold”) and
then compare for equality

Case Folding

With Unicode, the problem of comparing strings for equality while
ignoring capitalization is complex

Three distinct issues:

Different Unicode representations for the same characters
Example: Compare “é” (U+00EQ) to “é” (U+0065 U+0301)
Different representations of capital letters
Example: Compare “MASSE” to “MalBe”
Accents, diacriticals, and other symbols

Example: Compare “Saens” to “Saéns”

See

https://www.w3.org/TR/charmod-norm/#problemStatement

Handling Different Unicode Representations

Unicode defines normalization forms and algorithms that convert two
strings with different representations to the same representation

Further reading:

See

https://en.wikipedia.org/wiki/Unicode_equivalence

Handling Capitalization and Diacritical Differences

Unicode defines algorithms for caseless matching

Libraries are available for various languages that implement this algorithm

Other algorithms are available for removing accents

Case Studies

Searching Unicode Text

BJU Digital Music Project

Database contains composition titles and composer names like
Camille Saint-Saéns

Problem: Searches need to match Saens == Saéns

Solution:

Remove diacritical marks

Compare using case folding

Printing Source Code

Code Listings Utility
Problem: Print source code in unknown encodings

Solution: Node detconv
Uses port of to detect encoding

Uses to convert to ascii

https://github.com/chardet/chardet
https://github.com/ashtuchkin/iconv-lite

JavaScript and Unicode

JavaScript and Unicode

JavaScript represents strings internally using UCS-2
UCS-2 is a limited version of UTF-16 that handles only Plane O (BMP)

Strings containing only Unicode values in the BMP (U+0000 to
U+FFFF) often work well

Each of these can be represented using a single 16-bit value

Accented Characters

é can be stored using one or two code points:
const s1 = "\u00e9%"; // é
const s2 = "\u0065\u0301"; // é

Both strings represent a single character

quoScrip’r's length property counts code points, not characters
sl.length == 1
s2.length ==

Guess what you get when you index s2[0]2 (Browser demo)

More JavaScript

Consider emoji’s
Not in the BMP
Require a double-length UTF-16 value

JavaScript's string APl exposes the underlying 16-bit representation in
undesirable ways

Accurate indexing and character counts

Unfortunately no good solutions exist at present in native JavaScript

Node.js: Punycode library can help
Punycode represents Unicode in ASCII:

See
for more suggestions

https://en.wikipedia.org/wiki/Punycode
https://dmitripavlutin.com/what-every-javascript-developer-should-know-about-unicode/

Comparing Strings

Use the .normalize() method to convert two strings to a canonical
representation that can be compared

const s1 = "\uOOE9' // é
const s3 = 'e\u0301' // é
sl 1==53
s1.normalize() === s2.normalize()
Note that normalization preserves capitalization
The comparison is case sensitive
Case insensitive comparisons in JavaScript are tricky

Various hacky solutions exist

Converting Bytes to Unicode

Node.js: Byte data from files / sockets arrives as Buffer
If data is textual, must convert Buffer to string

Specify encoding

let str = buf.toString('utf8')
How do you know encoding?

Must be told

In general, not possible to infer

You Must Be Told the Encoding

1 Cannot infer from a string of bytes; can only guess

utf-8

1S08859-1

utf-16-be

shift-jis

Python and Unicode

Python and Unicode

Python 3 has two sequence types that can hold textual info

bytes (unencoded byte values)
str (UTF-8 encoded Unicode)

>>> my_string = "Hi \u2119\u@1b4\u2602\u210c\xf8\ulf24"
>>> type(my string) <class 'str'>

>>> my_bytes = b"Hello World"

>>> type(my bytes) <class 'bytes'>

Normalization and Case Folding

Normalize:

import unicodedata

if unicodedata.normalize('NFC', s1) == unicodedata.normalize('NFC', s2)
Case insensitive compare:

Basic strings: s1.lower() == s2.lower()

Better: s1.casefold() == s2.casefold()

Combining the two:
See https:/ /stackoverflow.com/a /40551443

Pain Relief

Tip #1: Unicode Sandwich

Bytes on the outside, Unicode on the inside

Encode/decode at the edges
Receive binary data
Decode immediately to Unicode
Process as Unicode text
Encode as late as possible

Send binary data

Tip #2: Know What You Have

Have a Buffer containing textual data?

Convert to string, specifying encoding

Have a string and need a buffer?

Convert to buffer, specifying encoding

Tip #3: Avoid guessing the encoding

-1 Penalty for guessing wrong:
Some characters may fail to decode

The string may decode successfully, but produce wrong characters

Pro Tip #4: Test with unicode

accented text for testind
Readable bu P nE)1 ASCIT
joo} [nJOsn si uMop-apisdn

References

Ned Batchelder, "Pragmatic Unicode."

"What Every Programmer Absolutely, Positively Needs To Know About
Encodings And Character Sets To Work With Text"

Python 3 Unicode

https://nedbatchelder.com/text/unipain.html
http://kunststube.net/encoding/
https://docs.python.org/3/howto/unicode.html

