
UNICODE

Stephen Schaub



Facts of Life
2

 FOL #1: Computers store and transmit data in units of bytes

 FOL #2: The world's languages require more than 256 characters

 Single-byte encodings like ASCII map individual bytes to characters

 All single-byte encodings pretend that FOL #2 doesn't exist



A Brief History of Encoding
3

 1 byte per character schemes

 ASCII

 Code page systems

 2 bytes per character schemes

 Asian languages

 Unicode

 1-4 bytes per character



Unicode
4

 Maps characters to code points

 A code point is a unique number that signifies a particular character

 Current count: Over 137,000 code points / characters

 Code points 0-127 correspond to ASCII code



Unicode Planes
5

 Code points organized into 17 planes

 Each plane can represent up to 65,535 code points

 Plane 0: Basic multilingual plane (BMP)

◼ Characters for almost all modern languages; several symbols

 16 supplementary "astral" planes

◼ Historic languages

◼ Music notation

◼ Emoji

 Room for over 1 million code points

 Most will likely never be assigned



Unicode Encodings
6

 Remember FOL #1? We need a way to represent code points using bytes.

 Various encodings possible

 UTF-8

 UTF-16

 UTF-32

 UTF-32 can represent any possible code point in a single 4-byte value

 Rarely used in practice (too inefficient)

 Both UTF-8 (1 byte values) and UTF-16 (2 byte values) are variable-length
encoding systems

 UTF-8 requires 1-4 bytes to represent a given code point

 UTF-16 requires 2 or 4 bytes to represent a given code point



UTF-8
7

 Most widely used encoding of Unicode

 Requires 1-4 bytes to represent a given code point

48 69 e2 84 99 c6 b4 e2 98 82 e2 84 8c c3 b8 e1 bc a4

H i ℙ ƴ ☂ ℌ ø ἤ



HTML Page Encoding
8

 Content-type header can specify encoding

 Content-Type: text/html; charset=utf-8

 Document charset meta tag can specify encoding

<html>

<head>

<meta charset="utf-8">

</head>

...



Practical Problems
9

 Variable-length encodings are memory-efficient, but not friendly for 

random access

 Consider a string API that allows you to index a Unicode string: 

◼ for (var i = 0; i < str.length; ++i)

console.log(str[i])

 What are the options for implementing this behavior?



Practical Problems
10

 Some characters have multiple code point representations

 Example: An accented e (é)

◼ é (U+00E9)

or

◼ e (U+0065) + accent (U+0301)

 Example: The sequence fi

◼ fi (U+FB01)

or

◼ f (U+0066) + i (U+0069)

 Comparing Unicode strings for equality can be tricky



Case Folding
11

 Problem: Need to compare two strings to see if they contain the same 

letters, ignoring capitalization

 With simple ASCII, case-insensitive comparisons are straightforward

 Convert all letters in a string to the same capitalization (“case fold”) and 

then compare for equality



Case Folding
12

 With Unicode, the problem of comparing strings for equality while 
ignoring capitalization is complex

 Three distinct issues:

 Different Unicode representations for the same characters 

◼ Example: Compare “é” (U+00E9) to “é” (U+0065 U+0301)

 Different representations of capital letters

◼ Example: Compare “MASSE” to “Maße”

 Accents, diacriticals, and other symbols

◼ Example: Compare “Saens” to “Saëns”

 See https://www.w3.org/TR/charmod-norm/#problemStatement

https://www.w3.org/TR/charmod-norm/#problemStatement


Handling Different Unicode Representations
13

 Unicode defines normalization forms and algorithms that convert two 

strings with different representations to the same representation

 Further reading:

 See https://en.wikipedia.org/wiki/Unicode_equivalence

https://en.wikipedia.org/wiki/Unicode_equivalence


Handling Capitalization and Diacritical Differences
14

 Unicode defines algorithms for caseless matching

 Libraries are available for various languages that implement this algorithm

 Other algorithms are available for removing accents



Case Studies15



Searching Unicode Text
16

 BJU Digital Music Project

 Database contains composition titles and composer names like

 Camille Saint-Saëns

 Problem: Searches need to match Saens == Saëns

 Solution: 

 Remove diacritical marks

 Compare using case folding



Printing Source Code
17

 Code Listings Utility

 Problem: Print source code in unknown encodings

 Solution: Node detconv

 Uses port of https://github.com/chardet/chardet to detect encoding

 Uses https://github.com/ashtuchkin/iconv-lite to convert to ascii

https://github.com/chardet/chardet
https://github.com/ashtuchkin/iconv-lite


JavaScript and Unicode18



JavaScript and Unicode
19

 JavaScript represents strings internally using UCS-2

 UCS-2 is a limited version of UTF-16 that handles only Plane 0 (BMP)

 Strings containing only Unicode values in the BMP (U+0000 to 

U+FFFF) often work well 

 Each of these can be represented using a single 16-bit value



Accented Characters
20

 é can be stored using one or two code points:

 const s1 = "\u00e9"; // é

 const s2 = "\u0065\u0301"; // é

 Both strings represent a single character

 JavaScript's length property counts code points, not characters

 s1.length == 1

 s2.length == 2

 Guess what you get when you index s2[0]? (Browser demo)



More JavaScript
21

 Consider emoji’s 😀

 Not in the BMP

 Require a double-length UTF-16 value

 JavaScript's string API exposes the underlying 16-bit representation in 

undesirable ways



Accurate indexing and character counts
22

 Unfortunately no good solutions exist at present in native JavaScript

 Node.js: Punycode library can help

 Punycode represents Unicode in ASCII:

 https://en.wikipedia.org/wiki/Punycode

 See https://dmitripavlutin.com/what-every-javascript-developer-

should-know-about-unicode/ for more suggestions

https://en.wikipedia.org/wiki/Punycode
https://dmitripavlutin.com/what-every-javascript-developer-should-know-about-unicode/


Comparing Strings
23

 Use the .normalize() method to convert two strings to a canonical 
representation that can be compared

 const s1 = '\u00E9' // é

 const s3 = 'e\u0301' // é

 s1 !== s3

 s1.normalize() === s2.normalize()

 Note that normalization preserves capitalization

 The comparison is case sensitive

 Case insensitive comparisons in JavaScript are tricky

 Various hacky solutions exist



Converting Bytes to Unicode
24

 Node.js: Byte data from files / sockets arrives as Buffer

 If data is textual, must convert Buffer to string

 Specify encoding

 let str = buf.toString('utf8')

 How do you know encoding?

 Must be told

 In general, not possible to infer



You Must Be Told the Encoding
25

 Cannot infer from a string of bytes; can only guess

48 69 e2 84 99 c6 b4 e2 98 82 e2 84 8c c3 b8 e1 bc a4

utf-8 H i ℙ ƴ ☂ ℌ ø ἤ

iso8859-1 H i â „ ™ Æ ´ â ˜ ‚ â „ Œ Ã ¸ á ¼ ¤

utf-16-le 楈 蓢 욙 芘 蓢 쎌 ꒼

utf-16-be 䡩 駆 듢 颂 賃 룡 벤

shift-jis H i 邃 卮 ｴ 笘 や ъ ﾃ ｸ 眈 ､



Python and Unicode26



Python and Unicode
27

 Python 3 has two sequence types that can hold textual info

 bytes (unencoded byte values)

 str (UTF-8 encoded Unicode)

>>> my_string = "Hi \u2119\u01b4\u2602\u210c\xf8\u1f24" 
>>> type(my_string) <class 'str'> 
>>> my_bytes = b"Hello World" 
>>> type(my_bytes) <class 'bytes'>



Normalization and Case Folding
28

 Normalize:

 import unicodedata

 if unicodedata.normalize('NFC', s1) == unicodedata.normalize('NFC', s2)

 Case insensitive compare:

 Basic strings: s1.lower() == s2.lower()

 Better: s1.casefold() == s2.casefold()

 Combining the two:

 See https://stackoverflow.com/a/40551443



Pain Relief

29



Tip #1: Unicode Sandwich
30

 Bytes on the outside, Unicode on the inside

 Encode/decode at the edges

 Receive binary data

 Decode immediately to Unicode

 Process as Unicode text

 Encode as late as possible

 Send binary data



Tip #2: Know What You Have
31

 Have a Buffer containing textual data?

 Convert to string, specifying encoding

 Have a string and need a buffer?

 Convert to buffer, specifying encoding



Tip #3: Avoid guessing the encoding
32

 Penalty for guessing wrong:

 Some characters may fail to decode

 The string may decode successfully, but produce wrong characters



Pro Tip #4: Test with unicode
33

 ȧƈƈḗƞŧḗḓ ŧḗẋŧ ƒǿř ŧḗşŧīƞɠ

 ℛℯα∂α♭ℓℯ ♭ʊ☂ η☺т Ѧ$☾ℐℐ

 ¡ooʇ nɟǝsn sı uʍop-ǝpısdnן



References
34

 Ned Batchelder, "Pragmatic Unicode." 

https://nedbatchelder.com/text/unipain.html

 "What Every Programmer Absolutely, Positively Needs To Know About 

Encodings And Character Sets To Work With Text"

http://kunststube.net/encoding/

 Python 3 Unicode

https://docs.python.org/3/howto/unicode.html

https://nedbatchelder.com/text/unipain.html
http://kunststube.net/encoding/
https://docs.python.org/3/howto/unicode.html

