
UNICODE

Stephen Schaub



Facts of Life
2

 FOL #1: Computers store and transmit data in units of bytes

 FOL #2: The world's languages require more than 256 characters

 Single-byte encodings like ASCII map individual bytes to characters

 All single-byte encodings pretend that FOL #2 doesn't exist



A Brief History of Encoding
3

 1 byte per character schemes

 ASCII

 Code page systems

 2 bytes per character schemes

 Asian languages

 Unicode

 1-4 bytes per character



Unicode
4

 Maps characters to code points

 A code point is a unique number that signifies a particular character

 Current count: Over 137,000 code points / characters

 Code points 0-127 correspond to ASCII code



Unicode Planes
5

 Code points organized into 17 planes

 Each plane can represent up to 65,535 code points

 Plane 0: Basic multilingual plane (BMP)

◼ Characters for almost all modern languages; several symbols

 16 supplementary "astral" planes

◼ Historic languages

◼ Music notation

◼ Emoji

 Room for over 1 million code points

 Most will likely never be assigned



Unicode Encodings
6

 Remember FOL #1? We need a way to represent code points using bytes.

 Various encodings possible

 UTF-8

 UTF-16

 UTF-32

 UTF-32 can represent any possible code point in a single 4-byte value

 Rarely used in practice (too inefficient)

 Both UTF-8 (1 byte values) and UTF-16 (2 byte values) are variable-length
encoding systems

 UTF-8 requires 1-4 bytes to represent a given code point

 UTF-16 requires 2 or 4 bytes to represent a given code point



UTF-8
7

 Most widely used encoding of Unicode

 Requires 1-4 bytes to represent a given code point

48 69 e2 84 99 c6 b4 e2 98 82 e2 84 8c c3 b8 e1 bc a4

H i ℙ ƴ ☂ ℌ ø ἤ



HTML Page Encoding
8

 Content-type header can specify encoding

 Content-Type: text/html; charset=utf-8

 Document charset meta tag can specify encoding

<html>

<head>

<meta charset="utf-8">

</head>

...



Practical Problems
9

 Variable-length encodings are memory-efficient, but not friendly for 

random access

 Consider a string API that allows you to index a Unicode string: 

◼ for (var i = 0; i < str.length; ++i)

console.log(str[i])

 What are the options for implementing this behavior?



Practical Problems
10

 Some characters have multiple code point representations

 Example: An accented e (é)

◼ é (U+00E9)

or

◼ e (U+0065) + accent (U+0301)

 Example: The sequence fi

◼ fi (U+FB01)

or

◼ f (U+0066) + i (U+0069)

 Comparing Unicode strings for equality can be tricky



Case Folding
11

 Problem: Need to compare two strings to see if they contain the same 

letters, ignoring capitalization

 With simple ASCII, case-insensitive comparisons are straightforward

 Convert all letters in a string to the same capitalization (“case fold”) and 

then compare for equality



Case Folding
12

 With Unicode, the problem of comparing strings for equality while 
ignoring capitalization is complex

 Three distinct issues:

 Different Unicode representations for the same characters 

◼ Example: Compare “é” (U+00E9) to “é” (U+0065 U+0301)

 Different representations of capital letters

◼ Example: Compare “MASSE” to “Maße”

 Accents, diacriticals, and other symbols

◼ Example: Compare “Saens” to “Saëns”

 See https://www.w3.org/TR/charmod-norm/#problemStatement

https://www.w3.org/TR/charmod-norm/#problemStatement


Handling Different Unicode Representations
13

 Unicode defines normalization forms and algorithms that convert two 

strings with different representations to the same representation

 Further reading:

 See https://en.wikipedia.org/wiki/Unicode_equivalence

https://en.wikipedia.org/wiki/Unicode_equivalence


Handling Capitalization and Diacritical Differences
14

 Unicode defines algorithms for caseless matching

 Libraries are available for various languages that implement this algorithm

 Other algorithms are available for removing accents



Case Studies15



Searching Unicode Text
16

 BJU Digital Music Project

 Database contains composition titles and composer names like

 Camille Saint-Saëns

 Problem: Searches need to match Saens == Saëns

 Solution: 

 Remove diacritical marks

 Compare using case folding



Printing Source Code
17

 Code Listings Utility

 Problem: Print source code in unknown encodings

 Solution: Node detconv

 Uses port of https://github.com/chardet/chardet to detect encoding

 Uses https://github.com/ashtuchkin/iconv-lite to convert to ascii

https://github.com/chardet/chardet
https://github.com/ashtuchkin/iconv-lite


JavaScript and Unicode18



JavaScript and Unicode
19

 JavaScript represents strings internally using UCS-2

 UCS-2 is a limited version of UTF-16 that handles only Plane 0 (BMP)

 Strings containing only Unicode values in the BMP (U+0000 to 

U+FFFF) often work well 

 Each of these can be represented using a single 16-bit value



Accented Characters
20

 é can be stored using one or two code points:

 const s1 = "\u00e9"; // é

 const s2 = "\u0065\u0301"; // é

 Both strings represent a single character

 JavaScript's length property counts code points, not characters

 s1.length == 1

 s2.length == 2

 Guess what you get when you index s2[0]? (Browser demo)



More JavaScript
21

 Consider emoji’s 😀

 Not in the BMP

 Require a double-length UTF-16 value

 JavaScript's string API exposes the underlying 16-bit representation in 

undesirable ways



Accurate indexing and character counts
22

 Unfortunately no good solutions exist at present in native JavaScript

 Node.js: Punycode library can help

 Punycode represents Unicode in ASCII:

 https://en.wikipedia.org/wiki/Punycode

 See https://dmitripavlutin.com/what-every-javascript-developer-

should-know-about-unicode/ for more suggestions

https://en.wikipedia.org/wiki/Punycode
https://dmitripavlutin.com/what-every-javascript-developer-should-know-about-unicode/


Comparing Strings
23

 Use the .normalize() method to convert two strings to a canonical 
representation that can be compared

 const s1 = '\u00E9' // é

 const s3 = 'e\u0301' // é

 s1 !== s3

 s1.normalize() === s2.normalize()

 Note that normalization preserves capitalization

 The comparison is case sensitive

 Case insensitive comparisons in JavaScript are tricky

 Various hacky solutions exist



Converting Bytes to Unicode
24

 Node.js: Byte data from files / sockets arrives as Buffer

 If data is textual, must convert Buffer to string

 Specify encoding

 let str = buf.toString('utf8')

 How do you know encoding?

 Must be told

 In general, not possible to infer



You Must Be Told the Encoding
25

 Cannot infer from a string of bytes; can only guess

48 69 e2 84 99 c6 b4 e2 98 82 e2 84 8c c3 b8 e1 bc a4

utf-8 H i ℙ ƴ ☂ ℌ ø ἤ

iso8859-1 H i â „ ™ Æ ´ â ˜ ‚ â „ Œ Ã ¸ á ¼ ¤

utf-16-le 楈 蓢 욙 芘 蓢 쎌 ꒼

utf-16-be 䡩 駆 듢 颂 賃 룡 벤

shift-jis H i 邃 卮 ｴ 笘 や ъ ﾃ ｸ 眈 ､



Python and Unicode26



Python and Unicode
27

 Python 3 has two sequence types that can hold textual info

 bytes (unencoded byte values)

 str (UTF-8 encoded Unicode)

>>> my_string = "Hi \u2119\u01b4\u2602\u210c\xf8\u1f24" 
>>> type(my_string) <class 'str'> 
>>> my_bytes = b"Hello World" 
>>> type(my_bytes) <class 'bytes'>



Normalization and Case Folding
28

 Normalize:

 import unicodedata

 if unicodedata.normalize('NFC', s1) == unicodedata.normalize('NFC', s2)

 Case insensitive compare:

 Basic strings: s1.lower() == s2.lower()

 Better: s1.casefold() == s2.casefold()

 Combining the two:

 See https://stackoverflow.com/a/40551443



Pain Relief

29



Tip #1: Unicode Sandwich
30

 Bytes on the outside, Unicode on the inside

 Encode/decode at the edges

 Receive binary data

 Decode immediately to Unicode

 Process as Unicode text

 Encode as late as possible

 Send binary data



Tip #2: Know What You Have
31

 Have a Buffer containing textual data?

 Convert to string, specifying encoding

 Have a string and need a buffer?

 Convert to buffer, specifying encoding



Tip #3: Avoid guessing the encoding
32

 Penalty for guessing wrong:

 Some characters may fail to decode

 The string may decode successfully, but produce wrong characters



Pro Tip #4: Test with unicode
33

 ȧƈƈḗƞŧḗḓ ŧḗẋŧ ƒǿř ŧḗşŧīƞɠ

 ℛℯα∂α♭ℓℯ ♭ʊ☂ η☺т Ѧ$☾ℐℐ

 ¡ooʇ nɟǝsn sı uʍop-ǝpısdnן



References
34

 Ned Batchelder, "Pragmatic Unicode." 

https://nedbatchelder.com/text/unipain.html

 "What Every Programmer Absolutely, Positively Needs To Know About 

Encodings And Character Sets To Work With Text"

http://kunststube.net/encoding/

 Python 3 Unicode

https://docs.python.org/3/howto/unicode.html

https://nedbatchelder.com/text/unipain.html
http://kunststube.net/encoding/
https://docs.python.org/3/howto/unicode.html

