WEB APPLICATION SECURITY

Attacks

1 Cross-Site Scripting

01 Cross-Site Request Forgery

Cross-Site Scripting (XSS)

A type of injection attack in which an attacker uses a vulnerable web
application to force a victim to execute malicious code

Discussion:

https://excess-xss.com/

Cross Site Scripting Prevention

Appropriately encode data from untrusted sources before outputting it
to HTML responses

Proper encoding depends on context of information on page

Review: How should value be encoded for each of the following
contexts?

Document Body:

<htm|><body> ... {{{value}}} ... </body></htm|>
Element Attribute:

<input type="text” name="somename” value="{{{value}}}">
Attribute Containing URL:

XSS Prevention, Continued

OWASP Cross Site Scripting Prevention Cheat Sheet

Good adyvice

Some recommended escaping can be reduced if care is taken with proper
quoting

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

XSS Prevention, Continued

Note Rule O, places never to put untrusted data

Rule 1: HTML Escape untrusted data in HTML Element Content
Example: <p> ... (HTML Escape data put here) ... </p>

Rule 2: Attribute Escape untrusted data in Typical HTML Attributes
Overkill if the attribute is properly quoted

When inserting data into a double-quoted attribute, simply ensure that the data
has any " characters replaced with "

Example:

let escapedData = untrusted.replace(™, """);

<textarea width="(... insert escapedData here...)">

XSS Prevention, Continued

Rule 3: Unnecessary if you follow good practices

Generating JavaScript code that contains dynamically inserted data is
rarely needed when using modern AJAX techniques

Rule 4: CSS Escape and Validate untrusted data inserted into Style
Property values

Like rule 2, escaping can be reduced if using properly quoted values
Rule 5: URL Escape untrusted data inserted into URLs

Important!

Rule 6: Sanitize HTML Markup with a Sanitizer Library

Good adyvice

XSS Prevention, Continued

Consider implementing a Content Security Policy that forbids inline
script execution on your site (see content-security-policy.com)

Cross-Site Request Forgery (CSRF)

An attack that forces an end user to execute unwanted actions on a
web application in which they're currently authenticated

https: / /owasp.org /www-community /attacks /csrf

Discussion

https://reflectoring.io/complete-guide-to-csrf/

CSRF Prevention

Use POST for state-modifying requests

Add confirmation screens for sensitive operations

Use SameSite session cookies

Generate and use secure CSRF tokens for state-modifying requests

Many frameworks provide built-in support for CSRF tokens
Example: Express csrf-sync module

See examples/webapps/carscsrf

See

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

OWASP Top Ten

Highlights "Top Ten" vulnerabilities in web applications

Our focus:
Injection
|dentification and Authentication Failures
Broken Access Control
Cryptographic Failures
Security Misconfiguration

Vulnerable and Outdated Components

Injection

Server-side code interacts with API's that execute strings containing
commands

SQL statements
Command Shell commands
eval() functions
Often the command strings must be built dynamically using data that
originated with user
executeQuery(“select * from users where username = \"“ + username + “\""”)
exec(“cp uploads/” + filename + “ /tmp”)

Injection occurs when users provide input values that alter the intended
effect of the command strings

Preventing Injection

Validate and /or Sanitize inputs before using them to build command
strings

Use SQL parameterized query mechanisms

Authentication vs. Authorization

Authentication — associating a client with a user account
Client present credentials
Server validates credentials against an entry in the account database
An authenticated client is known as a principal
Authorization — verifying a user has permission to access requested
info / perform requested action
Actions / data items are securables

Authorization involves verifying that a principal has access to a securable

|dentification and Authentication Failures

Includes a variety of vulnerabilities related to authentication and
session management

Allows use of weak passwords
Poor forgot-password procedures
Poor password management practices

Poor session ID management

Prevention:

Know and use best practices

Broken Access Control

Access Control: Restrictions that prevent users from accessing data or
functions outside what is allowed by their intended permissions

Applications often rely on view-level protections to implement access control
Don’t show links to admin functions to regular users
Display a subset of records for the current user to view / edit

Fail to account for possibility that users may modify URL to attempt to
Directly access restricted areas of application

Access data that they should not be able to see (example: insecure direct object
reference)

Fail to consider that users may attempt to access application using special
browser developer tools, or non-browser tools like curl / wget

Broken Access Control Exploits

Privilege elevation

Accessing data / functionality intended only for authenticated users without being
logged in

Accessing data / functionality intended only for administrators when logged in as
a non-admin user

Bypassing access control checks through URL modification or use of tools like
curl

http:/ /example.com /app /accountinfo?acct=notmyacct

Force browsing

Accessing a specific page of the application via direct URL entry without
navigating to it through the application

Broken Access Control Prevention

Application must not rely on view-level security
Application must check that the user has access to
Each page

Each record

Cryptographic Failures

Sensitive data needs to be protected
In transit (using https)
At rest (encrypting data in database)
Prevention

|dentify sensitive data

Authentication information (passwords)
Credit card information
Health data

Personally identifiable information (PII)

Ensure the data is protected in transit and at rest

Security Misconfiguration

Includes:
Default accounts and passwords enabled and unchanged
Error handling that reveals stack traces or overly informative error messages
Security settings in application servers, frameworks, databases not set to
secure values

Application / web servers with unnecessary demo applications / features
turned on in production

Example: Web server has directory listing feature unnecessarily enabled

Out of date software

Vulnerable and Outdated Components

Includes:
Third-party libraries with vulnerabilities

Application server with vulnerabilities
Unpatched OS

Prevention:

Regularly review and update third-party components

Example: use npm audit to identify vulnerable components in your app

Keep OS and application server up to date with security patches

References

1 OWASP Top 10

O https: / /owasp.org/www-project-top-ten/

1 OWASP Cheat Sheets

O https: / /cheatsheetseries.owasp.org/
1 OWASP Code Review Guide

O https: / /owasp.org / www-project-code-review-quide /

https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-code-review-guide/

