
WEB APPLICATION SECURITY

Stephen Schaub

Attacks
2

 Cross-Site Scripting

 Cross-Site Request Forgery

Cross-Site Scripting (XSS)
3

 A type of injection attack in which an attacker uses a vulnerable web

application to force a victim to execute malicious code

 Discussion:

 https://excess-xss.com/

https://excess-xss.com/

Cross Site Scripting Prevention
4

 Appropriately encode data from untrusted sources before outputting it
to HTML responses

 Proper encoding depends on context of information on page

 Review: How should value be encoded for each of the following
contexts?

 Document Body:

◼ <html><body> ... {{{value}}} ... </body></html>

 Element Attribute:

◼ <input type=“text” name=“somename” value=“{{{value}}}”>

 Attribute Containing URL:

XSS Prevention, Continued
5

 OWASP Cross Site Scripting Prevention Cheat Sheet

 https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Preve

ntion_Cheat_Sheet.html

 Good advice

 Some recommended escaping can be reduced if care is taken with proper

quoting

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

XSS Prevention, Continued
6

 Note Rule 0, places never to put untrusted data

 Rule 1: HTML Escape untrusted data in HTML Element Content

 Example: <p> ... (HTML Escape data put here) ... </p>

 Rule 2: Attribute Escape untrusted data in Typical HTML Attributes

 Overkill if the attribute is properly quoted

 When inserting data into a double-quoted attribute, simply ensure that the data
has any " characters replaced with "

 Example:

let escapedData = untrusted.replace('"', """);

<textarea width="(... insert escapedData here...)">

XSS Prevention, Continued
7

 Rule 3: Unnecessary if you follow good practices

 Generating JavaScript code that contains dynamically inserted data is
rarely needed when using modern AJAX techniques

 Rule 4: CSS Escape and Validate untrusted data inserted into Style
Property values

 Like rule 2, escaping can be reduced if using properly quoted values

 Rule 5: URL Escape untrusted data inserted into URLs

 Important!

 Rule 6: Sanitize HTML Markup with a Sanitizer Library

 Good advice

XSS Prevention, Continued
8

 Consider implementing a Content Security Policy that forbids inline

script execution on your site (see content-security-policy.com)

Cross-Site Request Forgery (CSRF)
9

 An attack that forces an end user to execute unwanted actions on a

web application in which they're currently authenticated

 https://owasp.org/www-community/attacks/csrf

 Discussion

 https://reflectoring.io/complete-guide-to-csrf/

https://reflectoring.io/complete-guide-to-csrf/

CSRF Prevention
10

 Use POST for state-modifying requests

 Add confirmation screens for sensitive operations

 Use SameSite session cookies

 Generate and use secure CSRF tokens for state-modifying requests

 Many frameworks provide built-in support for CSRF tokens

 Example: Express csrf-sync module

 See examples/webapps/carscsrf

 See

 https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

OWASP Top Ten
11

 Highlights "Top Ten" vulnerabilities in web applications

 Our focus:

 Injection

 Identification and Authentication Failures

 Broken Access Control

 Cryptographic Failures

 Security Misconfiguration

 Vulnerable and Outdated Components

Injection
12

 Server-side code interacts with API’s that execute strings containing
commands

 SQL statements

 Command Shell commands

 eval() functions

 Often the command strings must be built dynamically using data that
originated with user

 executeQuery(“select * from users where username = \”“ + username + “\””)

 exec(“cp uploads/” + filename + “ /tmp”)

 Injection occurs when users provide input values that alter the intended
effect of the command strings

Preventing Injection
13

 Validate and/or Sanitize inputs before using them to build command

strings

 Use SQL parameterized query mechanisms

Authentication vs. Authorization
14

 Authentication – associating a client with a user account

 Client present credentials

 Server validates credentials against an entry in the account database

 An authenticated client is known as a principal

 Authorization – verifying a user has permission to access requested

info / perform requested action

 Actions / data items are securables

 Authorization involves verifying that a principal has access to a securable

Identification and Authentication Failures
15

 Includes a variety of vulnerabilities related to authentication and

session management

 Allows use of weak passwords

 Poor forgot-password procedures

 Poor password management practices

 Poor session ID management

 Prevention:

 Know and use best practices

Broken Access Control
16

 Access Control: Restrictions that prevent users from accessing data or
functions outside what is allowed by their intended permissions

 Applications often rely on view-level protections to implement access control

 Don’t show links to admin functions to regular users

 Display a subset of records for the current user to view / edit

 Fail to account for possibility that users may modify URL to attempt to

 Directly access restricted areas of application

 Access data that they should not be able to see (example: insecure direct object
reference)

 Fail to consider that users may attempt to access application using special
browser developer tools, or non-browser tools like curl / wget

Broken Access Control Exploits
17

 Privilege elevation

 Accessing data / functionality intended only for authenticated users without being
logged in

 Accessing data / functionality intended only for administrators when logged in as
a non-admin user

 Bypassing access control checks through URL modification or use of tools like
curl

 http://example.com/app/accountInfo?acct=notmyacct

 Force browsing

 Accessing a specific page of the application via direct URL entry without
navigating to it through the application

Broken Access Control Prevention
18

 Application must not rely on view-level security

 Application must check that the user has access to

 Each page

 Each record

Cryptographic Failures
19

 Sensitive data needs to be protected

 In transit (using https)

 At rest (encrypting data in database)

 Prevention

 Identify sensitive data

◼ Authentication information (passwords)

◼ Credit card information

◼ Health data

◼ Personally identifiable information (PII)

 Ensure the data is protected in transit and at rest

Security Misconfiguration
20

 Includes:

 Default accounts and passwords enabled and unchanged

 Error handling that reveals stack traces or overly informative error messages

 Security settings in application servers, frameworks, databases not set to

secure values

 Application / web servers with unnecessary demo applications / features

turned on in production

◼ Example: Web server has directory listing feature unnecessarily enabled

 Out of date software

Vulnerable and Outdated Components
21

 Includes:

 Third-party libraries with vulnerabilities

 Application server with vulnerabilities

 Unpatched OS

 Prevention:

 Regularly review and update third-party components

◼ Example: use npm audit to identify vulnerable components in your app

 Keep OS and application server up to date with security patches

References
22

 OWASP Top 10

 https://owasp.org/www-project-top-ten/

 OWASP Cheat Sheets

 https://cheatsheetseries.owasp.org/

 OWASP Code Review Guide

 https://owasp.org/www-project-code-review-guide/

https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-code-review-guide/

