
WEB APPLICATION SECURITY

Stephen Schaub

Attacks
2

 Cross-Site Scripting

 Cross-Site Request Forgery

Cross-Site Scripting (XSS)
3

 A type of injection attack in which an attacker uses a vulnerable web

application to force a victim to execute malicious code

 Discussion:

 https://excess-xss.com/

https://excess-xss.com/

Cross Site Scripting Prevention
4

 Appropriately encode data from untrusted sources before outputting it
to HTML responses

 Proper encoding depends on context of information on page

 Review: How should value be encoded for each of the following
contexts?

 Document Body:

◼ <html><body> ... {{{value}}} ... </body></html>

 Element Attribute:

◼ <input type=“text” name=“somename” value=“{{{value}}}”>

 Attribute Containing URL:

XSS Prevention, Continued
5

 OWASP Cross Site Scripting Prevention Cheat Sheet

 https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Preve

ntion_Cheat_Sheet.html

 Good advice

 Some recommended escaping can be reduced if care is taken with proper

quoting

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

XSS Prevention, Continued
6

 Note Rule 0, places never to put untrusted data

 Rule 1: HTML Escape untrusted data in HTML Element Content

 Example: <p> ... (HTML Escape data put here) ... </p>

 Rule 2: Attribute Escape untrusted data in Typical HTML Attributes

 Overkill if the attribute is properly quoted

 When inserting data into a double-quoted attribute, simply ensure that the data
has any " characters replaced with "

 Example:

let escapedData = untrusted.replace('"', """);

<textarea width="(... insert escapedData here...)">

XSS Prevention, Continued
7

 Rule 3: Unnecessary if you follow good practices

 Generating JavaScript code that contains dynamically inserted data is
rarely needed when using modern AJAX techniques

 Rule 4: CSS Escape and Validate untrusted data inserted into Style
Property values

 Like rule 2, escaping can be reduced if using properly quoted values

 Rule 5: URL Escape untrusted data inserted into URLs

 Important!

 Rule 6: Sanitize HTML Markup with a Sanitizer Library

 Good advice

XSS Prevention, Continued
8

 Consider implementing a Content Security Policy that forbids inline

script execution on your site (see content-security-policy.com)

Cross-Site Request Forgery (CSRF)
9

 An attack that forces an end user to execute unwanted actions on a

web application in which they're currently authenticated

 https://owasp.org/www-community/attacks/csrf

 Discussion

 https://reflectoring.io/complete-guide-to-csrf/

https://reflectoring.io/complete-guide-to-csrf/

CSRF Prevention
10

 Use POST for state-modifying requests

 Add confirmation screens for sensitive operations

 Use SameSite session cookies

 Generate and use secure CSRF tokens for state-modifying requests

 Many frameworks provide built-in support for CSRF tokens

 Example: Express csrf-sync module

 See examples/webapps/carscsrf

 See

 https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

OWASP Top Ten
11

 Highlights "Top Ten" vulnerabilities in web applications

 Our focus:

 Injection

 Identification and Authentication Failures

 Broken Access Control

 Cryptographic Failures

 Security Misconfiguration

 Vulnerable and Outdated Components

Injection
12

 Server-side code interacts with API’s that execute strings containing
commands

 SQL statements

 Command Shell commands

 eval() functions

 Often the command strings must be built dynamically using data that
originated with user

 executeQuery(“select * from users where username = \”“ + username + “\””)

 exec(“cp uploads/” + filename + “ /tmp”)

 Injection occurs when users provide input values that alter the intended
effect of the command strings

Preventing Injection
13

 Validate and/or Sanitize inputs before using them to build command

strings

 Use SQL parameterized query mechanisms

Authentication vs. Authorization
14

 Authentication – associating a client with a user account

 Client present credentials

 Server validates credentials against an entry in the account database

 An authenticated client is known as a principal

 Authorization – verifying a user has permission to access requested

info / perform requested action

 Actions / data items are securables

 Authorization involves verifying that a principal has access to a securable

Identification and Authentication Failures
15

 Includes a variety of vulnerabilities related to authentication and

session management

 Allows use of weak passwords

 Poor forgot-password procedures

 Poor password management practices

 Poor session ID management

 Prevention:

 Know and use best practices

Broken Access Control
16

 Access Control: Restrictions that prevent users from accessing data or
functions outside what is allowed by their intended permissions

 Applications often rely on view-level protections to implement access control

 Don’t show links to admin functions to regular users

 Display a subset of records for the current user to view / edit

 Fail to account for possibility that users may modify URL to attempt to

 Directly access restricted areas of application

 Access data that they should not be able to see (example: insecure direct object
reference)

 Fail to consider that users may attempt to access application using special
browser developer tools, or non-browser tools like curl / wget

Broken Access Control Exploits
17

 Privilege elevation

 Accessing data / functionality intended only for authenticated users without being
logged in

 Accessing data / functionality intended only for administrators when logged in as
a non-admin user

 Bypassing access control checks through URL modification or use of tools like
curl

 http://example.com/app/accountInfo?acct=notmyacct

 Force browsing

 Accessing a specific page of the application via direct URL entry without
navigating to it through the application

Broken Access Control Prevention
18

 Application must not rely on view-level security

 Application must check that the user has access to

 Each page

 Each record

Cryptographic Failures
19

 Sensitive data needs to be protected

 In transit (using https)

 At rest (encrypting data in database)

 Prevention

 Identify sensitive data

◼ Authentication information (passwords)

◼ Credit card information

◼ Health data

◼ Personally identifiable information (PII)

 Ensure the data is protected in transit and at rest

Security Misconfiguration
20

 Includes:

 Default accounts and passwords enabled and unchanged

 Error handling that reveals stack traces or overly informative error messages

 Security settings in application servers, frameworks, databases not set to

secure values

 Application / web servers with unnecessary demo applications / features

turned on in production

◼ Example: Web server has directory listing feature unnecessarily enabled

 Out of date software

Vulnerable and Outdated Components
21

 Includes:

 Third-party libraries with vulnerabilities

 Application server with vulnerabilities

 Unpatched OS

 Prevention:

 Regularly review and update third-party components

◼ Example: use npm audit to identify vulnerable components in your app

 Keep OS and application server up to date with security patches

References
22

 OWASP Top 10

 https://owasp.org/www-project-top-ten/

 OWASP Cheat Sheets

 https://cheatsheetseries.owasp.org/

 OWASP Code Review Guide

 https://owasp.org/www-project-code-review-guide/

https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-code-review-guide/

