
 

Dream Lexical Components 

The following is a complete list of lexical components for Dream: 

• Newline. Dream is not a free-form language. Many Dream constructs are 

terminated by a newline sequence (UNICODE 10, or UNICODE 13 followed 

by UNICODE 10), so the scanner must report the newline symbol as a token. A 

newline may only appear where indicated in the grammar, unless it is 

immediately preceded by the line continuation symbol, '_', in which case the 

scanner should silently consume both the _ and the newline without reporting 

either to the parser.  

  

• Comment. A comment begins with a tilde ~ and continues to the end of the 

line. The scanner must not report comments to the parser, but must report the 

terminating newline.  

  

• White space. Any sequence of one or more space characters or tabs is white 

space. The scanner should ignore them.  

  

• Keyword. All of the following are keywords: 

 
boolean begin class else end false from if inherits int is loop me new 

not null string then true while 

 

Each keyword should be its own token (don't have a token type "keyword" that 

lumps all keywords together).  

  

• Identifier (name). An identifier is a sequence of letters, digits, and underscores 

(_) starting with an underscore or letter, other than a keyword.  

 

Note that Dream is case sensitive with respect to keywords and 

identifiers: begin is a keyword, but BEGIN is an identifier. 

  

• Integer literal. An integer literal is any nonempty sequence of decimal digits, 

with an optional prefix - to indicate a negative quantity.  

 

Examples: 35, 0, -15  

  

• String literal. Strings begin and end with the double quote character. A string 

consists of any number of printable ASCII characters except a double quote or 



backslash. In addition, a string may contain an escape sequence beginning with 

a backslash. There are two kinds of escape sequences: "named" and "octal". An 

octal escape is a backslash followed by three octal digits (0-7) and represents 

the corresponding 8-bit byte. The named escape sequences are in the table 

below. Here's a valid string: "Hi, \"Tom\", \nHow are \333things\222 today?" 

  Escape Name Octal 

  

\t  

\n 

\f 

\r 

\" 

\\ 

tab 

newline 

form feed 

carriage return 

double quote 

backslash 

011 

012 

014 

015 

042 

134 

  

• Predefined operator. Certain symbols stand for predefined operations. The list 

of operators follows. Note that and, or, and not are listed here for completeness, 

but should be categorized as keywords, not operators. 

  Operator Description 

  & String concatenation 

  

+  

- 

* 

/ 

and / or / not 

> / >= / = 

integer and real addition; unary positive 

integer and real subtraction; unary negative 

integer and real multiplication 

integer and real division 

logical and / or / not operators  

greater than, greater than or equal, equal operators 

      

• Miscellaneous. Each token listed here should be categorized separately. 

  Token Description Token Description 

  

:=  

( 

) 

[ 

] 

assignment op 

open parenthesis 

close parenthesis 

open bracket 

close bracket 

, 

; 

: 

. 

comma 

semicolon 

colon 

period 

  



Sample Input 

The following is a sample Dream 

program phase1.dream: 

 1 ~ This is a comment 

 2  

 3 class Main is 

 4   x: int        ~ x coord 

 5   name: string  ~ identifier 

 6    

 7   start() is 

 8     i: int 

 9     begin 

10       print("Hey,\"Sue!\"" & name) 

11     end  

12 % ~ The % is a bad token  

13 end "Unterminated 

14 "Hey\q" 

  

Expected Output 

phase1.dream:1,20:cr 

phase1.dream:2,1:cr 

phase1.dream:3,1:keyword:class 

phase1.dream:3,7:identifier:Main 

phase1.dream:3,12:keyword:is 

phase1.dream:3,14:cr 

phase1.dream:4,3:identifier:x 

phase1.dream:4,4:':' 

phase1.dream:4,6:keyword:int 

phase1.dream:4,25:cr 

phase1.dream:5,3:identifier:name 

phase1.dream:5,7:':' 

phase1.dream:5,9:keyword:string 

phase1.dream:5,28:cr 

phase1.dream:6,1:cr 

phase1.dream:7,3:identifier:start 

phase1.dream:7,8:'(' 

phase1.dream:7,9:')' 

phase1.dream:7,11:keyword:is 

phase1.dream:7,13:cr 

phase1.dream:8,5:identifier:i 

phase1.dream:8,6:':' 

phase1.dream:8,8:keyword:int 

phase1.dream:8,11:cr 

phase1.dream:9,5:keyword:begin 

phase1.dream:9,10:cr 

phase1.dream:10,7:identifier:print 

phase1.dream:10,12:'(' 

phase1.dream:10,13:string lit:"Hey,\"Sue!\"" 

phase1.dream:10,28:operator:'&' 

phase1.dream:10,30:identifier:name 

phase1.dream:10,34:')' 

phase1.dream:10,35:cr 

phase1.dream:11,5:keyword:end 

phase1.dream:11,8:cr 

phase1.dream:12,1:Unrecognized char: % 

phase1.dream:12,25:cr 

phase1.dream:13,1:keyword:end 

phase1.dream:13,5:Unterminated string:"Unterminated 

phase1.dream:13,18:cr 

phase1.dream:14,1:Illegal string:"Hey\q" 

phase1.dream:14,8:cr  

  

 


	Dream Lexical Components

