

Dream Syntax Specification

The Dream language is a block-structured object-oriented language. This document describes the

Dream grammar using extended BNF notation. Non-quoted square brackets [] indicate optional

phrases and curly braces { } indicate zero, one, or more repetitions of a phrase.

Terminals appear in bold courier (for keywords and other leximes who do not need

supplementary information) and italic arial (for leximes such as id which involve supplementary

information); nonterminals appear in <italic arial> with brackets around them.

When <cr> appears, it indicates the presence of one or more newlines.

 <start> ::= [<cr>] <class> { <cr> <class> } [<cr>]

<class> ::= class id [inherits from id] is <cr>

{ <var_decl> }

{ <method_decl> }

end id

 <var_decl> ::= id [: <type>] [:= <expression>] <cr>

<method_decl> ::= id ([<argument decl list>]) [: <type>] is <cr>

{ <var_decl> }

begin <cr>

<statement list>

end id <cr>

 <argument decl list> ::= { <argument decl> ; } <argument decl>

 <argument decl> ::= id : <type>

 <type> ::= int | string | boolean

 | id

 | <type> '[' [<expression>] ']'

 <statement list> ::= { <statement> <cr> }

 <statement> ::= <assignment stmt>

 | <if stmt>

 | <loop stmt>

 | <call stmt>

 <assignment stmt> ::= id { '[' <expression> ']' } := <expression>

<if stmt> ::= if <expression> then <cr>

<statement list>

[else <cr> <statement list>]
end if

<loop stmt> ::= loop while <expression> <cr>

<statement list>
end loop

 <call stmt> ::= [<expression> .] id ([<expression list>])

 <expression list> ::= { <expression> , } <expression>

 <expression> ::= id | string_literal | int_literal | true | false | null | me

 | new <type>

 | <expression> binary_op <expression>

 | unary_op <expression>

 | (<expression>)

 | [<expression> .] id ([<expression list>])

 | id '[' <expression> ']' { '[' <expression> ']' }

Note that the binary operations are all left associative, except for the relational operators which

do not "associate," i.e., x = x >= x is syntactically illegal. Also note the following operator

precedence chart (highest precedence listed first):

., new

-, +, not

*, /

+, -

&

=, >, >=

and

or

method call, new

unary operators

multiplication, division

addition, subtraction

string concatenation

relational operators

logical and

conditional or

• An operand between two operators of different precedence is bound to the operator with

higher precedence.

• An operand between two operators of equal precedence is bound to the one on its left (if

the operator is left associative).

	Dream Syntax Specification

